Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Inorg Chem ; 62(2): 769-781, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36580657

RESUMO

Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(µ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).

2.
Angew Chem Int Ed Engl ; 56(2): 591-594, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27925347

RESUMO

Co-crystallization of a cyanide-bridged tetranuclear complex [Co2 Fe2 ] with 4-cyanophenol (CP) gave a hydrogen bonding donor-acceptor system, [Co2 Fe2 (bpy*)4 (CN)6 (tp*)2 ](PF6 )2 ⋅2 CP⋅8 BN (1). 1 exhibited a three-step phase transition between HT, IM1, IM2, and LT phases upon temperature variation. Variable temperature magnetic measurements and structural analyses revealed that the three-step spin transition is caused by electron-transfer-coupled spin transitions (ETCSTs) accompanied with alteration of the hydrogen bonding interactions.

3.
Soft Matter ; 12(12): 3110-20, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26906684

RESUMO

Four simple rodlike Schiff base mesogens with tolane moiety were synthesized and applied to stabilize cubic blue phases (BPs) in simple binary mixture systems for the first time. When the chiral additive or was added into a chiral salicylaldimine-based compound, the temperature range of the cubic BP could be extended by more than 20 °C. However, when the chiral Schiff base mesogen was blended with chiral dopant possessing opposite handedness, , BPs could not be observed. Interestingly, the widest temperature range of the cubic BPs (∼35 °C) could be induced by adding the rodlike chiral dopant or into the rodlike racemic Schiff base mesogen with hydroxyl group. On the basis of our experimental results and molecular modeling, the appearance and temperature range of the BPs are affected by the dipole moment and the biaxiality of the molecular geometry. Accordingly, we demonstrated that the hydroxyl group and the methyl branch in this type of Schiff base mesogen play an important role in the stabilization of BPs.

4.
Inorg Chem ; 53(20): 10881-92, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25279822

RESUMO

A combination of N/S/Fe K-edge X-ray absorption spectroscopy (XAS), X-ray diffraction data, and density functional theory (DFT) calculations provides an efficient way to unambiguously delineate the electronic structures and bonding characters of Fe-S, N-O, and Fe-N bonds among the direduced-form Roussin's red ester (RRE) [Fe2(µ-SPh)2(NO)4](2-)(1) with {Fe(NO)2}(10)-{Fe(NO)2}(10) core, the reduced-form RRE [Fe2(µ-SPh)2(NO)4](-)(3) with {Fe(NO)2}(9)-{Fe(NO)2}(10) core, and RRE [Fe2(µ-SPh)2(NO)4] (4) with {Fe(NO)2}(9)-{Fe(NO)2}(9) core. The major contributions of highest occupied molecular orbital (HOMO) 113α/ß in complex 1 is related to the antibonding character between Fe(d) and Fe(d), Fe(d), and S atoms, and bonding character between Fe(d) and NO(π*). The effective nuclear charge (Zeff) of Fe site can be increased by removing electrons from HOMO to shorten the distances of Fe···Fe and Fe-S from 1 to 3 to 4 or, in contrast, to increase the Fe-N bond lengths from 1 to 3 to 4. The higher IR νNO stretching frequencies (1761, 1720 cm(-1) (4), 1680, 1665 cm(-1) (3), and 1646, 1611, 1603 cm(-1) (1)) associated with the higher transition energy of N1s →σ*(NO) (412.6 eV (4), 412.3 eV (3), and 412.2 eV (1)) and the higher Zeff of Fe derived from the transition energy of Fe1s → Fe3d (7113.8 eV (4), 7113.5 eV (3), and 7113.3 eV (1)) indicate that the N-O bond distances of these complexes are in the order of 1 > 3 > 4. The N/S/Fe K-edge XAS spectra as well as DFT computations reveal the reduction of complex 4 yielding complex 3 occurs at Fe, S, and NO; in contrast, reduction mainly occurs at Fe site from complex 3 to complex 1.


Assuntos
Ferro/química , Óxidos de Nitrogênio/química , Elétrons , Estrutura Molecular , Óxido Nítrico/química , Óxidos de Nitrogênio/síntese química , Teoria Quântica
5.
Langmuir ; 29(8): 2580-7, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23360494

RESUMO

Novel π-extended conjugated amphiphiles composed of a hydrophilic section of two quaternary ammonium groups and p-phenylene ethynylene with adjustable alkyl chain hydrophobic section were prepared by a multistep synthesis. These dicationic amphiphiles showed good water solubility and formed a tubular assembly in water. The evidence for the nanotubular comes from direct optical and TEM observations. A strong π-π stacking interaction between neighboring molecules, as evidenced by the red-shift and self-quenching in fluorescence, is proposed for the self-assembly. At the same time, dehydration of the bromide led to strong counterion condensation in headgroups, which resulted in the small curvature structure of the nanotubes. A bilayer lamellar structural model for the organic nanotube is proposed, and a reasonable structural model based on the experimental XRD pattern, as well as cell constants, is proposed.


Assuntos
Alcinos/síntese química , Éteres/síntese química , Corantes Fluorescentes/síntese química , Nanotubos/química , Alcinos/química , Cátions/síntese química , Cátions/química , Cristalografia por Raios X , Éteres/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
Inorg Chem ; 52(3): 1631-9, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23317006

RESUMO

A reversible redox reaction ({Fe(NO)(2)}(9) DNIC [(NO)(2)Fe(N(Mes)(TMS))(2)](-) (4) ⇄ oxidized-form DNIC [(NO)(2)Fe(N(Mes)(TMS))(2)] (5) (Mes = mesityl, TMS = trimethylsilane)), characterized by IR, UV-vis, (1)H/(15)N NMR, SQUID, XAS, single-crystal X-ray structure, and DFT calculation, was demonstrated. The electronic structure of the oxidized-form DNIC 5 (S(total) = 0) may be best described as the delocalized aminyl radical [(N(Mes)(TMS))(2)](2)(-•) stabilized by the electron-deficient {Fe(III)(NO(-))(2)}(9) motif, that is, substantial spin is delocalized onto the [(N(Mes)(TMS))(2)](2)(-•) such that the highly covalent dinitrosyl iron core (DNIC) is preserved. In addition to IR, EPR (g ≈ 2.03 for {Fe(NO)(2)}(9)), single-crystal X-ray structure (Fe-N(O) and N-O bond distances), and Fe K-edge pre-edge energy (7113.1-7113.3 eV for {Fe(NO)(2)}(10) vs 7113.4-7113.9 eV for {Fe(NO)(2)}(9)), the (15)N NMR spectrum of [Fe((15)NO)(2)] was also explored to serve as an efficient tool to characterize and discriminate {Fe(NO)(2)}(9) (δ 23.1-76.1 ppm) and {Fe(NO)(2)}(10) (δ -7.8-25.0 ppm) DNICs. To the best of our knowledge, DNIC 5 is the first structurally characterized tetrahedral DNIC formulated as covalent-delocalized [{Fe(III)(NO(-))(2)}(9)-[N(Mes)(TMS)](2)(-•)]. This result may explain why all tetrahedral DNICs containing monodentate-coordinate ligands isolated and characterized nowadays are confined in the {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs in chemistry and biology.


Assuntos
Aminas/química , Elétrons , Compostos Ferrosos/química , Óxido Nítrico/química , Silanos/química , Compostos Ferrosos/síntese química , Radicais Livres/química , Modelos Moleculares , Estrutura Molecular , Oxirredução
7.
Inorg Chem ; 52(19): 10958-67, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24020643

RESUMO

Thiathiophthene (TTP), a planar molecule with two fused heterocyclic five-membered rings and an essentially linear S-S-S bond, is a molecule of great interest due to its unique chemical bondings. To elucidate the remarkable bonding nature, a combined experimental and theoretical study on the electron density distribution of 2,5-dimethyl-3,4-trimethylene-6a-TTP (1) is investigated based on a multipole model through high-resolution X-ray diffraction data experimentally and on the density functional calculations (DFT) theoretically. In addition, S K-edge X-ray absorption spectroscopy (XAS) is measured to verify the chemical bonding concerning the sulfur atoms. The molecule can be firmly described as 10π electron with aromatic character among the eight atoms, S3C5, of the two fused five-membered rings plus three-center four-electron σ character along the S-S-S bond. Such bonding description is verified with the calculated XAS spectrum, where the pre-edge absorption for transitions from S 1s to π* and σ* are located. The three-center four-electron S-S-S σ bond makes the terminal S atoms richer in electron density than the central one.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Teoria Quântica , Sulfetos/química , Enxofre/química , Espectroscopia por Absorção de Raios X , Estrutura Molecular
8.
Inorg Chem ; 52(19): 11023-33, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24044777

RESUMO

Charge density study of a mixed-valence tri-cobalt compound, Co3(µ-admtrz)4(µ-OH)2(CN)6·2H2O (1) (admtrz = 3,5-dimethyl-4-amino-1,2,4-triazole), is investigated based on high resolution X-ray diffraction data and density functional theory (DFT) calculations. The molecular structure of this compound contains three cobalt atoms in a linear fashion, where two terminal ones are Co(III) at a low-spin (LS) state and a central one is Co(II) at a high-spin (HS) state with a total spin quantum number, S(total), of 3/2. It is centrosymmetric with the center of inversion located at the central Co atom (Co2). The Co2 ion is linked with each terminal cobalt (Co1) ion through two µ-admtrz ligands and a µ-OH ligand in a CoN4O2 coordination, where the Co1 is bonded additionally to three CN ligands with CoN2OC3 coordination. The combined experimental and theoretical charge density study identifies the different characters of two types of cobalt ions; more pronounced charge concentration and depletion features in the valence shell charge concentration (VSCC) are found in the Co(III) ion than in the Co(II) ion, and d-orbital populations also show the difference. According to topological properties associated with the bond critical point (BCP), the Co1-C(N) bond is the strongest among all the Co-ligand bonds in this compound; the Co-O is stronger than Co-N bond. Again Co1-O is stronger than Co2-O, so as the Co1-N being stronger than Co2-N bond. The electronic configuration of each type of Co atom is further characterized through magnetic measurement, Co-specific X-ray absorption near edge spectroscopy (XANES), and X-ray emission spectra (XES).

9.
Chemistry ; 18(9): 2565-77, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22266921

RESUMO

X-ray absorption, circular dichroism, and EPR spectroscopy were employed to investigate the metal-core structures in the Escherichia coli transcriptional factor SoxR under reduced, oxidized, and nitrosylated conditions. The spectroscopic data revealed that the coordination environments of the metal active centers varied only very slightly between the reduced and oxidized states, similar to most other proteins containing iron-sulfur clusters. Upon nitrosylation of oxidized SoxR, however, we observed a low-temperature EPR spectrum characteristic of a protein dinitrosyl iron complex (DNIC), with an intensity corresponding to about two DNICs per iron sulfur cluster in the protein, according to spin quantification relative to a low-molecular-weight DNIC standard. In addition, there was no evidence for dichroic spectral features in the responsive region of the nitrosyl iron complexes, as well as for Fe-Fe back-scattering in the fitting of the Fe extended X-ray absorption fine structure (EXAFS) spectrum. Instead the Fe EXAFS spectrum of the nitrosylated SoxR core exhibited the same first- and second-shell coordination environments characteristic of modeled small molecular DNICs, indicating that each of the [2 Fe-2 S] cores in the homodimeric SoxR was dissociated into two individual DNICs. Similar nitrosylation of the reduced mixed-valence SoxR for 1 min led to degradation of the iron-sulfur clusters to give several iron species, including one with EPR signals characteristic of a reduced Roussin's red ester (rRRE), a diamagnetic species, presumably Roussin's red ester (RRE), and a small amount of DNIC. We also undertook in vivo time-course studies of E. coli cells containing recombinant SoxR after rapid purging of the cells with exogenous NO gas. Rapid freeze-quenched EPR experiments demonstrated rapid formation of the SoxR rRRE species, followed by fast breakup of this precursor intermediate to form the stable protein-bound DNIC species. Accordingly, under nitrosative stress, we believe that the response of SoxR to NO could depend on the intracellular redox state of E. coli, the central modulator of which could be exploited to deduce the appropriate mechanism to sense the presence of NO for physiological regulation.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Ferro/química , Metais/química , Óxidos de Nitrogênio/química , Compostos Nitrosos/química , Fatores de Transcrição/química , Absorciometria de Fóton , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Ferro/metabolismo , Cinética , Óxidos de Nitrogênio/metabolismo , Compostos Nitrosos/metabolismo , Oxirredução , Fatores de Transcrição/metabolismo
10.
Inorg Chem ; 51(7): 4076-87, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22404753

RESUMO

The reversible redox transformations [(NO)(2)Fe(S(t)Bu)(2)](-) ⇌ [Fe(µ-S(t)Bu)(NO)(2)](2)(2-) ⇌ [Fe(µ-S(t)Bu)(NO)(2)](2)(-) ⇌ [Fe(µ-S(t)Bu)(NO)(2)](2) and [cation][(NO)(2)Fe(SEt)(2)] ⇌ [cation](2)[(NO)(2)Fe(SEt)(2)] (cation = K(+)-18-crown-6 ether) are demonstrated. The countercation of the {Fe(NO)(2)}(9) dinitrosyliron complexes (DNICs) functions to control the formation of the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced Roussin's red ester (RRE) [PPN](2)[Fe(µ-SR)(NO)(2)](2) or the {Fe(NO)(2)}(10) dianionic reduced monomeric DNIC [K(+)-18-crown-6 ether](2)[(NO)(2)Fe(SR)(2)] upon reduction of the {Fe(NO)(2)}(9) DNICs [cation][(NO)(2)Fe(SR)(2)] (cation = PPN(+), K(+)-18-crown-6 ether; R = alkyl). The binding preference of ligands [OPh](-)/[SR](-) toward the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) motif of dianionic reduced RRE follows the ligand-displacement series [SR](-) > [OPh](-). Compared to the Fe K-edge preedge energy falling within the range of 7113.6-7113.8 eV for the dinuclear {Fe(NO)(2)}(9){Fe(NO)(2)}(9) DNICs and 7113.4-7113.8 eV for the mononuclear {Fe(NO)(2)}(9) DNICs, the {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs and the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced RREs containing S/O/N-ligation modes display the characteristic preedge energy 7113.1-7113.3 eV, which may be adopted to probe the formation of the EPR-silent {Fe(NO)(2)}(10)-{Fe(NO)(2)}(10) dianionic reduced RREs and {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs in biology. In addition to the characteristic Fe/S K-edge preedge energy, the IR ν(NO) spectra may also be adopted to characterize and discriminate [(NO)(2)Fe(µ-S(t)Bu)](2) [IR ν(NO) 1809 vw, 1778 s, 1753 s cm(-1) (KBr)], [Fe(µ-S(t)Bu)(NO)(2)](2)(-) [IR ν(NO) 1674 s, 1651 s cm(-1) (KBr)], [Fe(µ-S(t)Bu)(NO)(2)](2)(2-) [IR ν(NO) 1637 m, 1613 s, 1578 s, 1567 s cm(-1) (KBr)], and [K-18-crown-6 ether](2)[(NO)(2)Fe(SEt)(2)] [IR ν(NO) 1604 s, 1560 s cm(-1) (KBr)].


Assuntos
Compostos de Ferro/química , Óxido Nítrico/química , Compostos Nitrosos/química , Éteres de Coroa/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Teoria Quântica , Termodinâmica , Espectroscopia por Absorção de Raios X
11.
Chem Commun (Camb) ; 58(16): 2746-2749, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35119447

RESUMO

We report an electrocatalyst, Co bases (metallic Co and Co(OH)2) with fluoride-incorporated CoO coating on the surface of (CoO-F/Co), was synthesized by the electro-deposition method. The porous network architecture of CoO-F/Co on the glassy carbon electrode exhibited an ultra-low overpotential of 15 mV, achieving the geometric current density of 10 mA cm-2 in 1.0 M KOH, which were comparable with the HER performance of numerous reported noble metal electrocatalysts. It is demonstrated that fluoride incorporation improved the electrodeposition particle size, electronic density, conductivity and hydrophilicity of CoO-F/Co the HER performance.

12.
ACS Appl Mater Interfaces ; 14(5): 6343-6357, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080366

RESUMO

Nitric oxide (NO) is an essential endogenous signaling molecule regulating multifaceted physiological functions in the (cardio)vascular, neuronal, and immune systems. Due to the short half-life and location-/concentration-dependent physiological function of NO, translational application of NO as a novel therapeutic approach, however, awaits a strategy for spatiotemporal control on the delivery of NO. Inspired by the magnetic hyperthermia and magneto-triggered drug release featured by Fe3O4 conjugates, in this study, we aim to develop a magnetic responsive NO-release material (MagNORM) featuring dual NO-release phases, namely, burst and steady release, for the selective activation of NO-related physiology and treatment of bacteria-infected cutaneous wound. After conjugation of NO-delivery [Fe(µ-S-thioglycerol)(NO)2]2 with a metal-organic framework (MOF)-derived porous Fe3O4@C, encapsulation of obtained conjugates within the thermo-responsive poly(lactic-co-glycolic acid) (PLGA) microsphere completes the assembly of MagNORM. Through continuous/pulsatile/no application of the alternating magnetic field (AMF) to MagNORM, moreover, burst/intermittent/slow release of NO from MagNORM demonstrates the AMF as an ON/OFF switch for temporal control on the delivery of NO. Under continuous application of the AMF, in particular, burst release of NO from MagNORM triggers an effective anti-bacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). In addition to the magneto-triggered bactericidal effect of MagNORM against E. coli-infected cutaneous wound in mice, of importance, steady release of NO from MagNORM without the AMF promotes the subsequent collagen formation and wound healing in mice.


Assuntos
Óxido Ferroso-Férrico/química , Campos Magnéticos , Estruturas Metalorgânicas/química , Microesferas , Óxido Nítrico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
13.
ACS Appl Mater Interfaces ; 14(3): 3849-3863, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019259

RESUMO

Nitric oxide (NO) is an endogenous gasotransmitter regulating alternative physiological processes in the cardiovascular system. To achieve translational application of NO, continued efforts are made on the development of orally active NO prodrugs for long-term treatment of chronic cardiovascular diseases. Herein, immobilization of NO-delivery [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-2) onto MIL-88B, a metal-organic framework (MOF) consisting of biocompatible Fe3+ and 1,4-benzenedicarboxylate (BDC), was performed to prepare a DNIC@MOF microrod for enhanced oral delivery of NO. In simulated gastric fluid, protonation of the BDC linker in DNIC@MOF initiates its transformation into a DNIC@tMOF microrod, which consisted of DNIC-2 well dispersed and confined within the BDC-based framework. Moreover, subsequent deprotonation of the BDC-based framework in DNIC@tMOF under simulated intestinal conditions promotes the release of DNIC-2 and NO. Of importance, this discovery of transformer-like DNIC@MOF provides a parallel insight into its stepwise transformation into DNIC@tMOF in the stomach followed by subsequent conversion into molecular DNIC-2 in the small intestine and release of NO in the bloodstream of mice. In comparison with acid-sensitive DNIC-2, oral administration of DNIC@MOF results in a 2.2-fold increase in the oral bioavailability of NO to 65.7% in mice and an effective reduction of systolic blood pressure (SBP) to a ΔSBP of 60.9 ± 4.7 mmHg in spontaneously hypertensive rats for 12 h.


Assuntos
Materiais Biocompatíveis/farmacologia , Estruturas Metalorgânicas/farmacologia , Óxido Nítrico/química , Pró-Fármacos/farmacologia , Administração Oral , Animais , Materiais Biocompatíveis/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Eletrodos , Concentração de Íons de Hidrogênio , Teste de Materiais , Estruturas Metalorgânicas/administração & dosagem , Camundongos , Óxido Nítrico/administração & dosagem , Tamanho da Partícula , Pró-Fármacos/química , Propriedades de Superfície
14.
Inorg Chem ; 50(12): 5396-406, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21618997

RESUMO

In addition to probing the formation of dinitrosyl iron complexes (DNICs) by the characteristic Fe K-edge pre-edge absorption energy ranging from 7113.4 to 7113.8 eV, the distinct S K-edge pre-edge absorption energy and pattern can serve as an efficient tool to unambiguously characterize and discriminate mononuclear DNICs and dinuclear DNICs containing bridged-thiolate and bridged-sulfide ligands. The higher Fe-S bond covalency modulated by the stronger electron-donating thiolates promotes the Fe → NO π-electron back-donation to strengthen the Fe-NO bond and weaken the NO-release ability of the mononuclear DNICs, which is supported by the Raman ν(Fe-NO) stretching frequency. The Fe-S bond covalency of DNICs further rationalizes the binding preference of the {Fe(NO)(2)} motif toward thiolates following the trend of [SEt](-) > [SPh](-) > [SC(7)H(4)SN](-). The relative d-manifold energy derived from S K-edge XAS as well as the Fe K-edge pre-edge energy reveals that the electronic structure of the {Fe(NO)(2)}(9) core of the mononuclear DNICs [(NO)(2)Fe(SR)(2)](-) is best described as {Fe(III)(NO(-))(2)}(9) compared to [{Fe(III)(NO(-))(2)}(9)-{Fe(III)(NO(-))(2)}(9)] for the dinuclear DNICs [Fe(2)(µ-SEt)(µ-S)(NO)(4)](-) and [Fe(2)(µ-S)(2)(NO)(4)](2-).


Assuntos
Elétrons , Ferro/química , Óxidos de Nitrogênio/química , Teoria Quântica , Estrutura Molecular , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
15.
Inorg Chem ; 50(20): 10417-31, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21939194

RESUMO

This manuscript describes the interaction of low-molecular-weight DNICs with short peptides designed to explore the stability and structure of DNIC-peptide/RRE-peptide constructs. Although characterization of protein-bound and low-molecular-weight DNICs is possible via EPR, XAS, and NRVS, this study demonstrates that the combination of aqueous IR ν(NO) and UV-vis spectra can serve as an efficient tool to characterize and discriminate peptide-bound DNICs and RREs. The de novo chelate-cysteine-containing peptides KC(A)(n)CK-bound (n = 1-4) dinitrosyliron complexes KC(A)(n)CK-DNIC (CnA-DNIC) and monodentate-cysteine-containing peptides KCAAK-/KCAAHK-bound Roussin's red esters (RREs) KCAAK-RRE/KCAAHK-RRE were synthesized and characterized by aqueous IR, UV-vis, EPR, CD, XAS, and ESI-MS. In contrast to the inertness of chelate-cysteine-containing peptide-bound DNICs toward KCAAK/KCAAHK, transformation of KCAAK-RRE/KCAAHK-RRE into CnA-DNIC triggered by CnA and reversible transformation between CnA-DNIC and CnA-RRE via {Fe(NO)(2)}(9)-{Fe(NO)(2)}(10) reduced-form peptide-bound RREs demonstrate that the {Fe(NO)(2)}(9) motif displays a preference for chelate-cysteine-containing peptides over monodentate-cysteine-containing peptides. Also, this study may signify that nitrosylation of [Fe-S] proteins generating protein-bound RREs, reduced protein-bound RREs, or protein-bound DNICs are modulated by both the oxidation state of iron and the chelating effect of the bound proteins of [Fe-S] clusters.


Assuntos
Desenho de Fármacos , Ferro/química , Compostos Organometálicos/química , Peptídeos/química , Enxofre/química , Sequência de Aminoácidos , Cisteína/química , Ésteres , Proteínas Ferro-Enxofre/química , Óxido Nítrico/química , Oxirredução , Solubilidade , Água/química
16.
ACS Appl Mater Interfaces ; 13(40): 47465-47477, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34592812

RESUMO

Regarding dihydrogen as a clean and renewable energy source, ammonia borane (NH3BH3, AB) was considered as a chemical H2-storage and H2-delivery material due to its high storage capacity of dihydrogen (19.6 wt %) and stability at room temperature. To advance the development of efficient and recyclable catalysts for hydrolytic dehydrogenation of AB with parallel insight into the reaction mechanism, herein, ZIF-67-derived fcc-Co@porous carbon nano/microparticles (cZIF-67_nm/cZIF-67_µm) were explored to promote catalytic dehydrogenation of AB and generation of H2(g). According to kinetic and computational studies, zero-order dependence on the concentration of AB, first-order dependence on the concentration of cZIF-67_nm (or cZIF-67_µm), and a kinetic isotope effect value of 2.45 (or 2.64) for H2O/D2O identify the Co-catalyzed cleavage of the H-OH bond, instead of the H-BH2NH3 bond, as the rate-determining step in the hydrolytic dehydrogenation of AB. Despite the absent evolution of H2(g) in the reaction of cZIF-67 and AB in the organic solvents (i.e., THF or CH3OH) or in the reaction of cZIF-67 and water, Co-mediated activation of AB and formation of a Co-H intermediate were evidenced by theoretical calculation, infrared spectroscopy in combination with an isotope-labeling experiment, and reactivity study toward CO2-to-formate/H2O-to-H2 conversion. Moreover, the computational study discovers a synergistic interaction between AB and the water cluster (H2O)9 on fcc-Co, which shifts the splitting of water into an exergonic process and lowers the thermodynamic barrier for the generation and desorption of H2(g) from the Co-H intermediates. With the kinetic and mechanistic study of ZIF-67-derived Co@porous carbon for catalytic hydrolysis of AB, the spatiotemporal control on the generation of H2(g) for the treatment of inflammatory diseases will be further investigated in the near future.

17.
JACS Au ; 1(7): 998-1013, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467346

RESUMO

Nitric oxide (NO), a pro-neurogenic and antineuroinflammatory gasotransmitter, features the potential to develop a translational medicine against neuropathological conditions. Despite the extensive efforts made on the controlled delivery of therapeutic NO, however, an orally active NO prodrug for a treatment of chronic neuropathy was not reported yet. Inspired by the natural dinitrosyl iron unit (DNIU) [Fe(NO)2], in this study, a reversible and dynamic interaction between the biomimetic [(NO)2Fe(µ-SCH2CH2OH)2Fe(NO)2] (DNIC-1) and serum albumin (or gastrointestinal mucin) was explored to discover endogenous proteins as a vehicle for an oral delivery of NO to the brain after an oral administration of DNIC-1. On the basis of the in vitro and in vivo study, a rapid binding of DNIC-1 toward gastrointestinal mucin yielding the mucin-bound dinitrosyl iron complex (DNIC) discovers the mucoadhesive nature of DNIC-1. A reversible interconversion between mucin-bound DNIC and DNIC-1 facilitates the mucus-penetrating migration of DNIC-1 shielded in the gastrointestinal tract of the stomach and small intestine. Moreover, the NO-release reactivity of DNIC-1 induces the transient opening of the cellular tight junction and enhances its paracellular permeability across the intestinal epithelial barrier. During circulation in the bloodstream, a stoichiometric binding of DNIC-1 to the serum albumin, as another endogenous protein vehicle, stabilizes the DNIU [Fe(NO)2] for a subsequent transfer into the brain. With aging mice under a Western diet as a disease model for metabolic syndrome and cognitive impairment, an oral administration of DNIC-1 in a daily manner for 16 weeks activates the hippocampal neurogenesis and ameliorates the impaired cognitive ability. Taken together, these findings disclose the synergy between biomimetic DNIC-1 and endogenous protein vehicles for an oral delivery of therapeutic NO to the brain against chronic neuropathy.

18.
Inorg Chem ; 49(20): 9636-40, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20849073

RESUMO

Reaction of hydrido[5,10,15,20-tetrakis(p-tolyl)porphyrinato]iridium(III) (Ir(ttp)H) (1) with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (2) at room temperature gave a 90% yield of the unsupported iridium(II) porphyrin dimer, Ir(II)(2)(ttp)(2) (3). Kinetic measurements revealed that the oxidation followed overall second-order kinetics: rate = k[Ir(ttp)H][TEMPO], k(25 °C) = 6.65 × 10(-4) M(-1). The entropy of activation (ΔS(‡) = -25.3 ± 2.5 cal mol(-1) K(-1)) and the kinetic isotope effect of 7.2 supported a bimolecular associative mechanism in the rate-determining hydrogen atom transfer from Ir(ttp)H to TEMPO.

19.
ACS Omega ; 5(10): 4991-5000, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201785

RESUMO

Iron pentacarbonyl (Fe(CO)5) is a versatile material that is utilized as an inhibitor of flame, shows soot suppressibility, and is used as a precursor for focused electron-beam-induced deposition (FEBID). X-ray absorption near-edge structure (XANES) of the K edge, which is a powerful technique for monitoring the oxidation states and coordination environment of metal sites, can be used to gain insight into Fe(CO)5-related reaction mechanisms in in situ experiments. We use a finite difference method (FDM) and molecular-orbital-based time-dependent density functional theory (TDDFT) calculations to clarify the Fe K-edge XANES features of Fe(CO)5. The two pre-edge peaks P1 and P2 are mainly the Fe(1s) → Fe-C(σ*) and Fe(1s) → Fe-C(π*) transitions, respectively. When the geometry transformed from D 3h to C 4v symmetry, a ∼30% decrease of the pre-edge P2 intensity was observed in the simulated spectra. This implies that the π bonding of Fe and CO is sensitive to changes in geometry. The following rising edge and white line regions are assigned to the Fe(1s) → Fe(4p)(mixing C(2p)) transitions. Our results may provide useful information to interpret XANES spectra variations of in situ reactions of metal-CO or similar compounds with π acceptor ligandlike metal-CN complexes.

20.
Biophys J ; 97(2): 609-17, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19619476

RESUMO

With Cd and Zn metal ions removed from the native rabbit-liver metallothionein upon unfolding, Cu-modified metallothioneins (Cu-MTs) were obtained during refolding in solutions containing Cu(I) or Cu(II) ions. X-ray absorption near-edge spectroscopic results confirm the respectively assigned oxidation states of the copper ions in Cu(I)-MT and Cu(II)-MT. Global and local structures of the Cu-MTs were subsequently characterized by anomalous small-angle x-ray scattering (ASAXS) and extended x-ray absorption fine structure. Energy-dependent ASAXS results indicate that the morphology of Cu(II)-MT resembles that of the native MT, whereas Cu(I)-MT forms oligomers with a higher copper content. Both dummy-residue simulation and model-shape fitting of the ASAXS data reveal consistently rodlike morphology for Cu(II)-MT. Clearly identified Cu-S, Cu-O, and Cu-Cu contributions in the extended x-ray absorption fine structure analysis indicate that both Cu(I) and Cu(II) ions are bonded with O and S atoms of nearby amino acids in a four-coordination environment, forming metal clusters smaller than metal thiolate clusters in the native MT. It is demonstrated that a combination of resonant x-ray scattering and x-ray absorption can be particularly useful in revealing complementary global and local structures of metalloproteins due to the atom specific characteristics of the two techniques.


Assuntos
Cobre/química , Cobre/metabolismo , Metalotioneína/química , Metalotioneína/metabolismo , Difração de Raios X , Absorção , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Desnaturação Proteica , Renaturação Proteica , Coelhos , Espalhamento a Baixo Ângulo , Soluções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa