Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(6): 1520-1535.e14, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157038

RESUMO

ß-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that ß-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of ß-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. ß-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.


Assuntos
COVID-19/metabolismo , SARS-CoV-2/metabolismo , Via Secretória , Liberação de Vírus , Fatores de Ribosilação do ADP/metabolismo , Animais , COVID-19/patologia , Feminino , Células HeLa , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Lisossomos , Camundongos , Tioureia/análogos & derivados , Tioureia/farmacologia , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Tratamento Farmacológico da COVID-19
2.
EMBO J ; 40(20): e107766, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34516001

RESUMO

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Assuntos
Glicoesfingolipídeos/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldina A/farmacologia , Ceramidas/metabolismo , Toxina da Cólera/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Glicosilação/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Toxina Shiga/farmacologia
3.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173048

RESUMO

G protein-coupled receptors (GPCRs) play crucial roles in numerous physiological and pathological processes. Mutations in GPCRs that result in loss of function or alterations in signaling can lead to inherited or acquired diseases. Herein, studying prokineticin receptor 2 (PROKR2), we initially identify distinct interactomes for wild-type (WT) versus a mutant (P290S) PROKR2 that causes hypogonadotropic hypogonadism. We then find that both the WT and mutant PROKR2 are targeted for endoplasmic reticulum (ER)-associated degradation, but the mutant is degraded to a greater extent. Further analysis revealed that both forms can also leave the ER to reach the Golgi. However, whereas most of the WT is further transported to the cell surface, most of the mutant is retrieved to the ER. Thus, the post-ER itinerary plays an important role in distinguishing the ultimate fate of the WT versus the mutant. We have further discovered that this post-ER itinerary reduces ER stress induced by the mutant PROKR2. Moreover, we extend the core findings to another model GPCR. Our findings advance the understanding of disease pathogenesis induced by a mutation at a key residue that is conserved across many GPCRs and thus contributes to a fundamental understanding of the diverse mechanisms used by cellular quality control to accommodate misfolded proteins.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Proteostase/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Hipogonadismo/metabolismo , Mutação de Sentido Incorreto/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Transdução de Sinais
4.
Nat Rev Mol Cell Biol ; 13(5): 323-8, 2012 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-22498832

RESUMO

Endocytic recycling returns proteins to the plasma membrane in many physiological contexts. Studies of these events have helped to elucidate fundamental mechanisms that underlie recycling. Recycling was for some time considered to be the exception to a general mechanism of active cargo sorting in multiple intracellular pathways. In recent years, studies have begun to reconcile this seeming disparity and also suggest explanations for why early recycling studies did not detect active sorting. Further articulation of this emerging trend has far-reaching implications for a deeper understanding of many physiological and pathological events that require recycling.


Assuntos
Endocitose , Endossomos/metabolismo , Transporte Biológico Ativo , Polaridade Celular , Humanos , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores da Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
5.
Nature ; 561(7722): 263-267, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209366

RESUMO

Starvation poses a fundamental challenge to cell survival. Whereas the role of autophagy in promoting energy homeostasis in this setting has been extensively characterized1, other mechanisms are less well understood. Here we reveal that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibits coat protein I (COPI) transport by targeting a GTPase-activating protein (GAP) towards ADP-ribosylation factor 1 (ARF1) to suppress COPI vesicle fission. GAPDH inhibits multiple other transport pathways, also by targeting ARF GAPs. Further characterization suggests that this broad inhibition is activated by the cell during starvation to reduce energy consumption. These findings reveal a remarkable level of coordination among the intracellular transport pathways that underlies a critical mechanism of cellular energy homeostasis.


Assuntos
Metabolismo Energético , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Homeostase , Adenilato Quinase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Autofagia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Fibroblastos , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Humanos , Camundongos , Fosforilação , Ribonucleotídeos/metabolismo , Inanição
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658379

RESUMO

The sorting nexin (SNX) family of proteins deform the membrane to generate transport carriers in endosomal pathways. Here, we elucidate how a prototypic member, SNX1, acts in this process. Performing cryoelectron microscopy, we find that SNX1 assembles into a protein lattice that consists of helical rows of SNX1 dimers wrapped around tubular membranes in a crosslinked fashion. We also visualize the details of this structure, which provides a molecular understanding of how various parts of SNX1 contribute to its ability to deform the membrane. Moreover, we have compared the SNX1 structure with a previously elucidated structure of an endosomal coat complex formed by retromer coupled to a SNX, which reveals how the molecular organization of the SNX in this coat complex is affected by retromer. The comparison also suggests insight into intermediary stages of assembly that results in the formation of the retromer-SNX coat complex on the membrane.


Assuntos
Membrana Celular/metabolismo , Multimerização Proteica , Nexinas de Classificação/metabolismo , Animais , Membrana Celular/química , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Camundongos , Estrutura Quaternária de Proteína , Nexinas de Classificação/química , Nexinas de Classificação/ultraestrutura
7.
Am J Respir Cell Mol Biol ; 65(5): 532-543, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34166600

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common, complex disease and a major cause of morbidity and mortality. Although multiple genetic determinants of COPD have been implicated by genome-wide association studies (GWASs), the pathophysiological significance of these associations remains largely unknown. From a COPD protein-protein interaction network module, we selected a network path between two COPD GWAS genes for validation studies: FAM13A (family with sequence similarity 13 member A)-AP3D1-CTGF- TGFß2. We find that TGFß2, FAM13A, and AP3D1 (but not CTGF) form a cellular protein complex. Functional characterization suggests that this complex mediates the secretion of TGFß2 through an AP-3 (adaptor protein 3)-dependent pathway, with FAM13A acting as a negative regulator by targeting a late stage of this transport that involves the dissociation of coat-cargo interaction. Moreover, we find that TGFß2 is a transmembrane protein that engages the AP-3 complex for delivery to the late endosomal compartments for subsequent secretion through exosomes. These results identify a pathophysiological context that unifies the biological network role of two COPD GWAS proteins and reveal novel mechanisms of cargo transport through an intracellular pathway.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades delta do Complexo de Proteínas Adaptadoras/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Complexo 3 de Proteínas Adaptadoras/genética , Subunidades delta do Complexo de Proteínas Adaptadoras/genética , Linhagem Celular , Exossomos/metabolismo , Proteínas Ativadoras de GTPase/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Mapas de Interação de Proteínas/genética , Transporte Proteico , Reprodutibilidade dos Testes , Fator de Crescimento Transformador beta2/genética
8.
Nat Rev Mol Cell Biol ; 10(5): 360-4, 2009 05.
Artigo em Inglês | MEDLINE | ID: mdl-19293819

RESUMO

The coat protein I (COPI) complex is considered to be one of the best-characterized coat complexes. Studies on how it functions in vesicle formation have provided seminal contributions to the general paradigm in vesicular transport that the ADP-ribosylation factor (ARF) small GTPases are key regulators of coat complexes. Here, we discuss emerging evidence that suggests the need to revise some long-held views on how COPI vesicle formation is achieved.


Assuntos
Complexo I de Proteína do Envoltório/fisiologia , Vesículas Revestidas/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Animais , Complexo I de Proteína do Envoltório/metabolismo , Humanos
9.
Nature ; 521(7553): 529-32, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25945738

RESUMO

The Golgi complex has a central role in the intracellular sorting of secretory proteins. Anterograde transport through the Golgi has been explained by the movement of Golgi cisternae, known as cisternal maturation. Because this explanation is now appreciated to be incomplete, interest has developed in understanding tubules that connect the Golgi cisternae. Here we show that the coat protein I (COPI) complex sorts anterograde cargoes into these tubules in human cells. Moreover, the small GTPase CDC42 regulates bidirectional Golgi transport by targeting the dual functions of COPI in cargo sorting and carrier formation. CDC42 also directly imparts membrane curvature to promote COPI tubule formation. Our findings further reveal that COPI tubular transport complements cisternal maturation in explaining how anterograde Golgi transport is achieved, and that bidirectional COPI transport is modulated by environmental cues through CDC42.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteína Coatomer/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Transporte Proteico , Receptores de LDL/metabolismo , Proteínas do Envelope Viral/metabolismo
10.
PLoS Comput Biol ; 15(7): e1007081, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31291238

RESUMO

Studies on the Bin-Amphiphysin-Rvs (BAR) domain have advanced a fundamental understanding of how proteins deform membrane. We previously showed that a BAR domain in tandem with a Pleckstrin Homology (PH domain) underlies the assembly of ACAP1 (Arfgap with Coil-coil, Ankryin repeat, and PH domain I) into an unusual lattice structure that also uncovers a new paradigm for how a BAR protein deforms membrane. Here, we initially pursued computation-based refinement of the ACAP1 lattice to identify its critical protein contacts. Simulation studies then revealed how ACAP1, which dimerizes into a symmetrical structure in solution, is recruited asymmetrically to the membrane through dynamic behavior. We also pursued electron microscopy (EM)-based structural studies, which shed further insight into the dynamic nature of the ACAP1 lattice assembly. As ACAP1 is an unconventional BAR protein, our findings broaden the understanding of the mechanistic spectrum by which proteins assemble into higher-ordered structures to achieve membrane deformation.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Dimerização , Proteínas Ativadoras de GTPase/química , Humanos , Domínios de Homologia à Plecstrina , Conformação Proteica
11.
Biochim Biophys Acta ; 1864(12): 1667-1677, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27596062

RESUMO

We report on the molecular interactions of the farnesoid X receptor (FXR) with prenylflavonoids, an emerging class of FXR modulators. FXR is an attractive therapeutic target for mitigating metabolic syndromes (MetS) because FXR activates the inhibitory nuclear receptor, small heterodimer partner (SHP), thereby inhibiting both gluconeogenesis and de novo lipogenesis. We and others have shown that xanthohumol (XN), the principal prenylflavonoid of the hop plant (Humulus lupulus L.), is a FXR agonist based on its ability to affect lipid and glucose metabolism in vivo and to induces FXR target genes in biliary carcinoma cells and HEK293 cells. However, studies are currently lacking to rationalize the molecular mechanisms of FXR modulation by prenylflavonoids. We addressed this deficiency and report the first systematic study of FXR prenylflavonoid interactions. We combined hydrogen deuterium exchange mass spectrometry (HDX-MS) with computational studies for dissecting molecular recognition and conformational impact of prenylflavonoid interactions on the ligand binding domain (LBD) of human FXR. Four prenylflavonoids were tested: xanthohumol, a prenylated chalcone, two prenylated flavonones, namely isoxanthohumol (IX) and 8-prenylnaringenin (8PN), and a semisynthetic prenylflavonoid derivative, tetrahydroxanthohumol (TX). Enhancement of the HDX protection profile data by in silico predicted models of FXR prenylflavonoid complexes resulted in mapping of the prenylflavonoid interactions within the canonical ligand binding pocket. Our findings provide a foundation for the exploration of the chemical scaffolds of prenylated chalcones and flavanones as leads for future structure activity studies of this important nuclear receptor with potential relevance for ameliorating lipid metabolic disorders associated with obesity and MetS.


Assuntos
Flavonoides/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Medição da Troca de Deutério , Flavonoides/química , Células HEK293 , Humanos , Cinética , Ligantes , Espectrometria de Massas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Propiofenonas/metabolismo , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/agonistas , Espectrometria de Fluorescência
12.
Biochim Biophys Acta ; 1844(9): 1684-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24953769

RESUMO

Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of transcription factors that plays a key role in the regulation of bile acids, lipid and glucose metabolisms. The regulative function of FXR is governed by conformational changes of the ligand binding domain (LBD) upon ligand binding. Although FXR is a highly researched potential therapeutic target, only a limited number of FXR-agonist complexes have been successfully crystallized and subsequently yielded high resolution structures. There is currently no structural information of any FXR-antagonist complexes publically available. We therefore explored the use of amide hydrogen/deuterium exchange (HDX) coupled with mass spectrometry for characterizing conformational changes in the FXR-LBD upon ligand binding. Ligand-specific deuterium incorporation profiles were obtained for three FXR ligand chemotypes: GW4064, a synthetic non-steroidal high affinity agonist; the bile acid chenodeoxycholic acid (CDCA), the endogenous low affinity agonist of FXR; and Z-guggulsterone (GG), an in vitro antagonist of the steroid chemotype. A comparison of the HDX profiles of their ligand-bound FXR-LBD complexes revealed a unique mode of interaction for GG. The conformational features of the FXR-LBD-antagonist interaction are discussed.


Assuntos
Hipolipemiantes/química , Pregnenodionas/química , Receptores Citoplasmáticos e Nucleares/química , Sequência de Aminoácidos , Ácido Quenodesoxicólico/química , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isoxazóis/química , Ligantes , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteínas Recombinantes/química
13.
J Cell Sci ; 126(Pt 23): 5313-6, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24293329

RESUMO

A FASEB Summer Research Conference entitled 'Arf and Rab family G proteins' was held in July 2013 at Snowmass Village, Snowmass, Colorado. Arfs and Rabs are two families of GTPases that control membrane trafficking in eukaryotic cells, and increasing evidence indicates that their functions are tightly coordinated. Because many workers in this field have focused on only one family, this meeting was designed to integrate our understanding of the two families. The conference was organized by Elizabeth Sztul (University of Alabama, Birmingham, USA) and Jim Casanova (University of Virginia, Charlottesville, USA), and provided an opportunity for approximately 90 scientists to communicate their work and discuss future directions for the field. The talks highlighted the structural, functional and regulatory properties of Arf and Rab GTPases and the need to develop coordinated approaches to investigate them. Here, we present the major themes that emerged from the meeting.


Assuntos
Fatores de Ribosilação do ADP/genética , Proteínas rab de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(52): 21354-9, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23223633

RESUMO

Intracellular recycling pathways play critical roles in internalizing membrane and fluid phase cargo and in balancing the inflow and outflow of membrane and cell surface molecules. To identify proteins involved in the regulation of endocytic recycling, we used an shRNA trafficking library and screened for changes in the surface expression of CD1a antigen-presenting molecules that follow an endocytic recycling route. We found that silencing of the ADP-ribosylation factor (Arf)-like small GTPase Arl13b led to a decrease in CD1a surface expression, diminished CD1a function, and delayed CD1a recycling, suggesting that Arl13b is involved in the regulation of endocytic recycling traffic. Arl13b appears to be required for the major route of endocytic trafficking, causing clustering of early endosomes and leading to the accumulation of endocytic cargo. Moreover, Arl13b colocalized with markers of the endocytic recycling pathway followed by CD1a, namely Arf6 and Rab22a. We also detected an interaction between Arl13b and the actin cytoskeleton. Arl13b was previously implicated in cilia formation and function. Our present results indicate a previously unidentified role for Arl13b in endocytic recycling traffic and suggest a link between Arl13b function and the actin cytoskeleton.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Endocitose , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/química , Citoesqueleto de Actina/metabolismo , Antígenos CD1/metabolismo , Membrana Celular/metabolismo , Análise por Conglomerados , Endossomos/metabolismo , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
15.
Am J Physiol Renal Physiol ; 307(8): F939-48, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143457

RESUMO

Acute kidney injury (AKI) dramatically increases sepsis mortality, but AKI diagnosis is delayed when based on serum creatinine (SCr) changes, due in part, to decreased creatinine production. During experimental sepsis, we compared serum cystatin C (sCysC), SCr, and blood urea nitrogen (BUN) to inulin glomerular filtration rate (iGFR) before or 3-18 h after cecal ligation and puncture (CLP)-induced sepsis in CD-1 mice. sCysC had a faster increase and reached peak levels more rapidly than SCr in both sepsis and bilateral nephrectomy (BiNx) models. sCysC was a better surrogate of iGFR than SCr during sepsis. Combining sCysC with SCr values into a composite biomarker improved correlation with iGFR better than any biomarker alone or any other combination. We determined the renal contribution to sCysC handling with BiNx. sCysC and SCr were lower post-BiNx/CLP than post-BiNx alone, despite increased inflammatory and nonrenal organ damage biomarkers. Sepsis decreased CysC production in nephrectomized mice without changing body weight or CysC space. Sepsis decreased sCysC production and increased nonrenal clearance, similar to effects of sepsis on SCr. sCysC, SCr, and BUN were measured 6 h postsepsis to link AKI with mortality. Mice with above-median sCysC, BUN, or SCr values 6 h postsepsis died earlier than mice with below-median values, corresponding to a substantial AKI association with sepsis mortality in this model. sCysC performs similarly to SCr in classifying mice at risk for early mortality. We conclude that sCysC detects AKI early and better reflects iGFR in CLP-induced sepsis. This study shows that renal biomarkers need to be evaluated in specific contexts.


Assuntos
Injúria Renal Aguda/mortalidade , Biomarcadores/sangue , Creatinina/sangue , Cistatina C/sangue , Sepse/mortalidade , Injúria Renal Aguda/sangue , Injúria Renal Aguda/fisiopatologia , Animais , Nitrogênio da Ureia Sanguínea , Ceco/lesões , Taxa de Filtração Glomerular , Inulina , Ligadura , Masculino , Camundongos , Nefrectomia , Punções , Sepse/complicações
17.
Nat Commun ; 15(1): 1021, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310114

RESUMO

The epidermal growth factor receptor (EGFR) plays important roles in multiple cellular events, including growth, differentiation, and motility. A major mechanism of downregulating EGFR function involves its endocytic transport to the lysosome. Sorting of proteins into intracellular pathways involves cargo adaptors recognizing sorting signals on cargo proteins. A dileucine-based sorting signal has been identified previously for the sorting of endosomal EGFR to the lysosome, but a cargo adaptor that recognizes this signal remains unknown. Here, we find that phosphoglycerate kinase 1 (PGK1) is recruited to endosomal membrane upon its phosphorylation, where it binds to the dileucine sorting signal in EGFR to promote the lysosomal transport of this receptor. We also elucidate two mechanisms that act in concert to promote PGK1 recruitment to endosomal membrane, a lipid-based mechanism that involves phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and a protein-based mechanism that involves hepatocyte growth factor receptor substrate (Hrs). These findings reveal an unexpected function for a metabolic enzyme and advance the mechanistic understanding of how EGFR is transported to the lysosome.


Assuntos
Receptores ErbB , Fosfoglicerato Quinase , Fosfoglicerato Quinase/metabolismo , Receptores ErbB/metabolismo , Endossomos/metabolismo , Proteínas/metabolismo , Lisossomos/metabolismo , Transporte Proteico/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
18.
World Neurosurg ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004180

RESUMO

OBJECTIVE: To investigate the association between resilience and outcomes of pain and neck-related disability after single- and double-level anterior cervical discectomy and fusion (ACDF). METHODS: Patients who underwent single- or double-level ACDF were sent a survey between 6 months and 2 years after surgery. The survey included the Brief Resilience Scale (BRS), visual analogue scale (VAS) for pain, Neck Disability Index (NDI), and Pain Self-Efficacy Questionnaire (PSEQ-2). Patients completed the VAS and NDI twice, once describing preoperative pain and disability and once describing current pain and disability. Respondents were classified as high resilience (HR), medium resilience (MR), or low resilience (LR). Demographics, PSEQ-2 scores, pre- and postoperative VAS and NDI scores, and change in VAS (ΔVAS) and NDI (ΔNDI) scores were compared between groups. RESULTS: Thirty-three patients comprised the HR group, 273 patients comprised the MR group, and 47 patients comprised the LR group. All groups demonstrated postoperative improvement in VAS and NDI scores that exceeded previously established MCID values. The HR group demonstrated greater improvement in pain compared with the LR group (ΔVAS: -5.8 for HR vs. -4.4 for LR, P = 0.05). Compared with the MR group, the LR group demonstrated greater postoperative pain (VAS: 3.2 for LR vs. 2.5 for MR, P = 0.02) and disability (NDI: 11.9 for LR vs. 8.6 for MR, P = 0.02). CONCLUSIONS: Patients demonstrated improvement in pain and neck-related disability after single- and double-level ACDF, regardless of resilience score. Patients with greater resilience may be expected to demonstrate more improvement in pain after ACDF.

19.
bioRxiv ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38853868

RESUMO

Lipid transfer through membrane contact has been implicated to support vesicular transport, but a mechanistic understanding of this process remains to be achieved. Here, examining Coat Protein I (COPI) transport, we find that phosphatidylcholine (PC) with short acyl chains (sPC), which is needed to support COPI vesicle fission, is delivered through membrane contact from the endoplasmic reticulum (ER) to the Golgi complex at sites of COPI vesicle formation. Phosphatidylinositol transfer protein beta (PITPß) plays a central role in this delivery by not only catalyzing PC transfer, but also forming membrane contact. By combining cell-based studies with reconstitution approaches, we achieve spatial and temporal detail in explaining how sPC delivery occurs. Our findings advance the mechanistic understanding of how membrane contact is needed for vesicular transport in a model pathway and shed new insights into how PITPß acts.

20.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562716

RESUMO

Cancer cell fate has been widely ascribed to mutational changes within protein-coding genes associated with tumor suppressors and oncogenes. In contrast, the mechanisms through which the biophysical properties of membrane lipids influence cancer cell survival, dedifferentiation and metastasis have received little scrutiny. Here, we report that cancer cells endowed with a high metastatic ability and cancer stem cell-like traits employ ether lipids to maintain low membrane tension and high membrane fluidity. Using genetic approaches and lipid reconstitution assays, we show that these ether lipid-regulated biophysical properties permit non-clathrin-mediated iron endocytosis via CD44, leading directly to significant increases in intracellular redox-active iron and enhanced ferroptosis susceptibility. Using a combination of in vitro three-dimensional microvascular network systems and in vivo animal models, we show that loss of ether lipids also strongly attenuates extravasation, metastatic burden and cancer stemness. These findings illuminate a mechanism whereby ether lipids in carcinoma cells serve as key regulators of malignant progression while conferring a unique vulnerability that can be exploited for therapeutic intervention.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa