RESUMO
Most genetic variants associated with adult height have been identified through large genome-wide association studies (GWASs) in European-ancestry cohorts. However, it is unclear how these variants influence linear growth during adolescence. This study uses anthropometric and genotypic data from a longitudinal study conducted in an American Indian community in Arizona between 1965-2007. Growth parameters (i.e. height, velocity, and timing of growth spurt) were derived from the Preece-Baines growth model, a parametric growth curve fitted to longitudinal height data, in 787 participants with height measurements spanning the whole period of growth. Heritability estimates suggested that genetic factors could explain 25% to 71% of the variance of pubertal growth traits. We performed a GWAS of growth parameters, testing their associations with 5 077 595 imputed or directly genotyped variants. Six variants associated with height at peak velocity (P < 5 × 10-8, adjusted for sex, birth year and principal components). Implicated genes include NUDT3, previously associated with adult height, and PACSIN1. Two novel variants associated with duration of growth spurt (P < 5 × 10-8) in LOC105375344, an uncharacterized gene with unknown function. We finally examined the association of growth parameters with a polygenic score for height derived from 9557 single nucleotide polymorphisms (SNPs) identified in the GIANT meta-analysis for which genotypic data were available for the American Indian study population. Height polygenic score was correlated with the magnitude and velocity of height growth that occurred before and at the peak of the adolescent growth spurt, indicating overlapping genetic architecture, with no influence on the timing of adolescent growth.
Assuntos
Estatura , Estudo de Associação Genômica Ampla , Indígenas Norte-Americanos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Puberdade , Humanos , Estatura/genética , Masculino , Feminino , Adolescente , Herança Multifatorial/genética , Indígenas Norte-Americanos/genética , Puberdade/genética , Arizona , Estudos Longitudinais , Criança , GenótipoRESUMO
AIMS/HYPOTHESIS: There is limited information on how polygenic scores (PSs), based on variants from genome-wide association studies (GWASs) of type 2 diabetes, add to clinical variables in predicting type 2 diabetes incidence, particularly in non-European-ancestry populations. METHODS: For participants in a longitudinal study in an Indigenous population from the Southwestern USA with high type 2 diabetes prevalence, we analysed ten constructions of PS using publicly available GWAS summary statistics. Type 2 diabetes incidence was examined in three cohorts of individuals without diabetes at baseline. The adult cohort, 2333 participants followed from age ≥20 years, had 640 type 2 diabetes cases. The youth cohort included 2229 participants followed from age 5-19 years (228 cases). The birth cohort included 2894 participants followed from birth (438 cases). We assessed contributions of PSs and clinical variables in predicting type 2 diabetes incidence. RESULTS: Of the ten PS constructions, a PS using 293 genome-wide significant variants from a large type 2 diabetes GWAS meta-analysis in European-ancestry populations performed best. In the adult cohort, the AUC of the receiver operating characteristic curve for clinical variables for prediction of incident type 2 diabetes was 0.728; with the PS, 0.735. The PS's HR was 1.27 per SD (p=1.6 × 10-8; 95% CI 1.17, 1.38). In youth, corresponding AUCs were 0.805 and 0.812, with HR 1.49 (p=4.3 × 10-8; 95% CI 1.29, 1.72). In the birth cohort, AUCs were 0.614 and 0.685, with HR 1.48 (p=2.8 × 10-16; 95% CI 1.35, 1.63). To further assess the potential impact of including PS for assessing individual risk, net reclassification improvement (NRI) was calculated: NRI for the PS was 0.270, 0.268 and 0.362 for adult, youth and birth cohorts, respectively. For comparison, NRI for HbA1c was 0.267 and 0.173 for adult and youth cohorts, respectively. In decision curve analyses across all cohorts, the net benefit of including the PS in addition to clinical variables was most pronounced at moderately stringent threshold probability values for instituting a preventive intervention. CONCLUSIONS/INTERPRETATION: This study demonstrates that a European-derived PS contributes significantly to prediction of type 2 diabetes incidence in addition to information provided by clinical variables in this Indigenous study population. Discriminatory power of the PS was similar to that of other commonly measured clinical variables (e.g. HbA1c). Including type 2 diabetes PS in addition to clinical variables may be clinically beneficial for identifying individuals at higher risk for the disease, especially at younger ages.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Adulto , Adolescente , Adulto Jovem , Pré-Escolar , Criança , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Incidência , Estudos Longitudinais , Estudo de Associação Genômica Ampla , Fatores de RiscoRESUMO
Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact.
Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Índice de Massa Corporal , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo , Sudoeste dos Estados UnidosRESUMO
BACKGROUND: Genome-wide association studies have shown that body mass index (BMI), an estimate of obesity, is highly polygenic. Individual variants typically have small effect sizes, making it challenging to identify unique loci in under-represented ethnic groups which lack statistical power due to their small sample size. Yet obesity is a major health disparity and is particularly prevalent in southwestern American Indians. Here, we identify and characterize a new locus for BMI that was detected by analyzing moderate associations with BMI obtained in a population-based sample of southwestern American Indians together with the well-powered GIANT dataset. METHODS: Genotypes for 10.5 million variants were tested for association with BMI in 5870 American Indians and 2600 variants that showed an association P < 10-3 in the American Indian sample were combined in a meta-analysis with the BMI data reported in GIANT (N = 240,608). The newly identified gene, NFIA-AS2 was functionally characterized, and the impact of its lead associated variant rs1777538 was studied both in-silico and in-vitro. RESULTS: Rs1777538 (T/C; C allele frequency = 0.16 in American Indians and 0.04 in GIANT, meta-analysis P = 5.0 × 10-7) exhibited a large effect in American Indians (1 kg/m2 decrease in BMI per copy of C allele). NFIA-AS2 was found to be a nuclear localized long non-coding RNA expressed in tissues pertinent to human obesity. Analysis of this variant in human brown preadipocytes showed that NFIA-AS2 transcripts carrying the C allele had increased RNA degradation compared to the T allele transcripts (half-lives = 9 h, 13 h respectively). During brown adipogenesis, NFIA-AS2 featured a stage-specific regulation of nearby gene expression where rs1777538 demonstrated an allelic difference in regulation in the mature adipocytes (the strongest difference was observed for L1TD1, P = 0.007). CONCLUSION: Our findings support a role for NFIA-AS2 in regulating pathways that impact BMI.
Assuntos
Índice de Massa Corporal , Indígenas Norte-Americanos , Obesidade , RNA Longo não Codificante , Humanos , Indígena Americano ou Nativo do Alasca , Estudo de Associação Genômica Ampla , Indígenas Norte-Americanos/genética , Fatores de Transcrição NFI/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Sudoeste dos Estados UnidosRESUMO
AIMS/HYPOTHESIS: Prevalence of type 2 diabetes differs among human ancestry groups, and many hypotheses invoke differential natural selection to account for these differences. We sought to assess the potential role of differential natural selection across major continental ancestry groups for diabetes and related traits, by comparison of genetic and phenotypic differences. METHODS: This was a cross-sectional comparison among 734 individuals from an urban sample (none of whom was more closely related to another than third-degree relatives), including 83 African Americans, 523 American Indians and 128 European Americans. Participants were not recruited based on diabetes status or other traits. BMI was calculated, and diabetes was diagnosed by a 75 g oral glucose tolerance test. In those with normal glucose tolerance (n = 434), fasting insulin and 30 min post-load insulin, adjusted for 30 min glucose, were taken as measures of insulin resistance and secretion, respectively. Whole exome sequencing was performed, resulting in 97,388 common (minor allele frequency ≥ 5%) variants; the coancestry coefficient (FST) was calculated across all markers as a measure of genetic divergence among ancestry groups. The phenotypic divergence index (PST) was also calculated from the phenotypic differences and heritability (which was estimated from genetic relatedness calculated empirically across all markers in 761 American Indian participants prior to the exclusion of close relatives). Under evolutionary neutrality, the expectation is PST = FST, while for traits under differential selection PST is expected to be significantly greater than FST. A bootstrap procedure was used to test the hypothesis PST = FST. RESULTS: With adjustment for age and sex, prevalence of type 2 diabetes was 34.0% in American Indians, 12.4% in African Americans and 10.4% in European Americans (p = 2.9 × 10-10 for difference among groups). Mean BMI was 36.3, 33.4 and 33.0 kg/m2, respectively (p = 1.9 × 10-7). Mean fasting insulin was 63.8, 48.4 and 45.2 pmol/l (p = 9.2 × 10-5), while mean 30 min insulin was 559.8, 553.5 and 358.8 pmol/l, respectively (p = 5.7 × 10-8). FST across all markers was 0.130, while PST for liability to diabetes, adjusted for age and sex, was 0.149 (p = 0.35 for difference with FST). PST was 0.094 for BMI (p = 0.54), 0.095 for fasting insulin (p = 0.54) and 0.216 (p = 0.18) for 30 min insulin. For type 2 diabetes and BMI, the maximum divergence between populations was observed between American Indians and European Americans (PST-MAX = 0.22, p = 0.37, and PST-MAX = 0.14, p = 0.61), which suggests that a relatively modest 22% or 14% of the genetic variance, respectively, can potentially be explained by differential selection (assuming the absence of neutral drift). CONCLUSIONS/INTERPRETATION: These analyses suggest that while type 2 diabetes and related traits differ significantly among continental ancestry groups, the differences are consistent with neutral expectations based on heritability and genetic distances. While these analyses do not exclude a modest role for natural selection, they do not support the hypothesis that differential natural selection is necessary to explain the phenotypic differences among these ancestry groups. Graphical abstract.
Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Peptídeo C/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Genótipo , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Resistência à Insulina/fisiologiaRESUMO
AIMS/HYPOTHESIS: Variants in CREBRF (rs12513649 and rs373863828) have been strongly associated with increased BMI and decreased risk of type 2 diabetes in Polynesian populations; the A allele at rs373863828 is common in Polynesians but rare in most other global populations. The aim of the present study was to assess the association of CREBRF variants with obesity and diabetes in Pacific Islander (largely Marianas and Micronesian) populations from Guam and Saipan. METHODS: CREBRF rs12513649 and rs373863828 were genotyped in 2022 participants in a community-based cross-sectional study designed to identify determinants of diabetes and end-stage renal disease (ESRD). Associations were analysed with adjustment for age, sex, ESRD and the first four genetic principal components from a genome-wide association study (to account for population stratification); a genomic control procedure was used to account for residual stratification. RESULTS: The G allele at rs12513649 had an overall frequency of 7.7%, which varied from 2.2% to 20.7% across different Marianas and Micronesian populations; overall frequency of the A allele at rs373863828 was 4.2% (range: 1.1-5.4%). The G allele at rs12513649 was associated with higher BMI (ß = 1.55 kg/m2 per copy; p = 0.0026) as was the A allele at rs373863828 (ß = 1.48 kg/m2, p = 0.033). The same alleles were associated with lower risk of diabetes (OR per copy: 0.63 [p = 0.0063] and 0.49 [p = 0.0022], respectively). Meta-analyses combining the current results with previous results in Polynesians showed a strong association between the A allele at rs373863828 and BMI (ß = 1.38 kg/m2; p = 2.5 × 10-29) and diabetes (OR 0.65, p = 1.5 × 10-13). CONCLUSIONS/INTERPRETATION: These results confirm the associations of CREBRF variants with higher BMI and lower risk of diabetes and, importantly, they suggest that these variants contribute to the risk of obesity and diabetes in Oceanic populations.
Assuntos
Polimorfismo de Nucleotídeo Único/genética , Proteínas Supressoras de Tumor/genética , Alelos , Índice de Massa Corporal , Estudos Transversais , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Guam , Haplótipos , Humanos , Falência Renal Crônica/genética , Masculino , Havaiano Nativo ou Outro Ilhéu do Pacífico , Obesidade/genéticaRESUMO
The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10-14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10-4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10-8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10-9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10-7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.
Assuntos
Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Ventrículos do Coração/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Negro ou Afro-Americano/genética , Alelos , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/fisiopatologia , Eletrocardiografia , Feminino , Genótipo , Humanos , Masculino , Miocárdio/patologia , Polimorfismo de Nucleotídeo Único/genética , População Branca/genéticaRESUMO
Prevalence of diabetes and obesity in Mexican Pima Indians is low, while prevalence in US Pima Indians is high. Although lifestyle likely accounts for much of the difference, the role of genetic factors is not well explored. To examine this, we genotyped 359 single nucleotide polymorphisms, including established type 2 diabetes and obesity variants from genome-wide association studies (GWAS) and 96 random markers, in 342 Mexican Pimas. A multimarker risk score of obesity variants was associated with body mass index (BMI; ß = 0.81 kg/m2 per SD, P = 0.0066). The mean value of the score was lower in Mexican Pimas than in US Pimas (P = 4.3 × 10-11 ), and differences in allele frequencies at established loci could account for approximately 7% of the population difference in BMI; however, the difference in risk scores was consistent with evolutionary neutrality given genetic distance. To identify loci potentially under recent natural selection, allele frequencies at 283 variants were compared between US and Mexican Pimas, accounting for genetic distance. The largest differences were seen at HLA markers (e.g., rs9271720, difference = 0.75, P = 8.7 × 10-9 ); genetic distances at HLA were greater than at random markers (P = 1.6 × 10-46 ). Analyses of GWAS data in 937 US Pimas also showed sharing of alleles identical by descent at HLA that exceeds its genomic expectation (P = 7.0 × 10-10 ). These results suggest that, in addition to the widely recognized balancing selection at HLA, recent directional selection may also occur, resulting in marked allelic differentiation between closely related populations.
Assuntos
Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/genética , Antígenos HLA/genética , Indígenas Norte-Americanos/genética , Obesidade/etnologia , Obesidade/genética , Alelos , Índice de Massa Corporal , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , México , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
AIMS: Insulin-like growth factor 1 receptor (IGF1R) is involved in cell growth and glucose homeostasis. In the current study, the IGF1R locus was analysed as a candidate gene for type 2 diabetes (T2D) in American Indians. MATERIALS AND METHODS: Whole genome sequence data from 335 American Indians identified 3 novel missense variants in IGF1R. The associations of IGF1R variants with T2D, age of T2D onset and birth weight were analysed in a population-based sample of 7701 American Indians. RESULTS: A novel glycine-to-aspartic acid substitution (G310D) in IGF1R was identified, which associated with T2D in a sex-specific manner (Psex interaction = 0.02). In women, the aspartic acid (D) allele (frequency = 0.034) was associated with increased risk for T2D (n = 4292, P = 2.0 × 10-5 adjusted for age, birth year, and the first 5 genetic principal components; odds ratio [OR] = 2.23 [1.54-3.23] per risk allele) and an earlier age of T2D onset (n = 4292, P = 2 × 10-4 , hazard rate ratio = 1.45 [1.20-1.75], Psex interaction = 0.05). Female carriers of the D-allele also had lower birth weight (n = 1313, ß = -163 g, P = .006, Psex interaction = 0.008). Among 85 siblings discordant for G310D, carriers of the D-allele had shorter stature as compared with carriers of the G-allele (ß = -1.6 cm, P = .001, within family model). The G310D variant was functionally studied in vitro, where the D-allele had a 22% increase (P = .0005) in FOXO1-induced transcriptional activity, due to decreased activation of the PI3K/AKT pathway mediated through reduced IGF1R activity. CONCLUSION: A unique G310D variant in IGF1R, which occurs in 6% American Indians, may impair IGF1R signalling pathways, thereby increasing the risk of T2D.
Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único , Receptores de Somatomedina/genética , Diabetes Mellitus Tipo 2/etnologia , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Receptor IGF Tipo 1 , Estados Unidos/epidemiologiaRESUMO
Chronic periodontitis (CP) is a common oral disease that confers substantial systemic inflammatory and microbial burden and is a major cause of tooth loss. Here, we present the results of a genome-wide association study of CP that was carried out in a cohort of 4504 European Americans (EA) participating in the Atherosclerosis Risk in Communities (ARIC) Study (mean age-62 years, moderate CP-43% and severe CP-17%). We detected no genome-wide significant association signals for CP; however, we found suggestive evidence of association (P < 5 × 10(-6)) for six loci, including NIN, NPY, WNT5A for severe CP and NCR2, EMR1, 10p15 for moderate CP. Three of these loci had concordant effect size and direction in an independent sample of 656 adult EA participants of the Health, Aging, and Body Composition (Health ABC) Study. Meta-analysis pooled estimates were severe CP (n = 958 versus health: n = 1909)-NPY, rs2521634 [G]: odds ratio [OR = 1.49 (95% confidence interval (CI = 1.28-1.73, P = 3.5 × 10(-7)))]; moderate CP (n = 2293)-NCR2, rs7762544 [G]: OR = 1.40 (95% CI = 1.24-1.59, P = 7.5 × 10(-8)), EMR1, rs3826782 [A]: OR = 2.01 (95% CI = 1.52-2.65, P = 8.2 × 10(-7)). Canonical pathway analysis indicated significant enrichment of nervous system signaling, cellular immune response and cytokine signaling pathways. A significant interaction of NUAK1 (rs11112872, interaction P = 2.9 × 10(-9)) with smoking in ARIC was not replicated in Health ABC, although estimates of heritable variance in severe CP explained by all single nucleotide polymorphisms increased from 18 to 52% with the inclusion of a genome-wide interaction term with smoking. These genome-wide association results provide information on multiple candidate regions and pathways for interrogation in future genetic studies of CP.
Assuntos
Periodontite Crônica/genética , Estudo de Associação Genômica Ampla , Adulto , Fatores Etários , Idoso , Alelos , Composição Corporal , Periodontite Crônica/metabolismo , Estudos de Coortes , Feminino , Frequência do Gene , Loci Gênicos , Genótipo , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Transdução de SinaisRESUMO
Determining the long-range haplotypes in a diploid individual is a major technical challenge. Here we report a method of molecular haplotyping by directly imaging multiple polymorphic sites on individual human DNA molecules simultaneously. We demonstrate the utility of this technology by accurately determining the haplotypes consisting of up to 16 single-nucleotide polymorphisms in genomic regions up to 50 kilobases.
Assuntos
Haplótipos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Carbocianinas/química , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 7/genética , Cromossomos Humanos Par 8/genética , DNA/química , Primers do DNA/química , DNA de Cadeia Simples/química , DNA Polimerase Dirigida por DNA/química , Exodesoxirribonucleases/química , Técnicas Genéticas , Heterozigoto , Homozigoto , Humanos , Microscopia de Fluorescência/métodos , Reação em Cadeia da Polimerase/métodos , Coloração e Rotulagem/métodos , Ativador de Plasminogênio Tecidual/genéticaRESUMO
Persistently low white blood cell count (WBC) and neutrophil count is a well-described phenomenon in persons of African ancestry, whose etiology remains unknown. We recently used admixture mapping to identify an approximately 1-megabase region on chromosome 1, where ancestry status (African or European) almost entirely accounted for the difference in WBC between African Americans and European Americans. To identify the specific genetic change responsible for this association, we analyzed genotype and phenotype data from 6,005 African Americans from the Jackson Heart Study (JHS), the Health, Aging and Body Composition (Health ABC) Study, and the Atherosclerosis Risk in Communities (ARIC) Study. We demonstrate that the causal variant must be at least 91% different in frequency between West Africans and European Americans. An excellent candidate is the Duffy Null polymorphism (SNP rs2814778 at chromosome 1q23.2), which is the only polymorphism in the region known to be so differentiated in frequency and is already known to protect against Plasmodium vivax malaria. We confirm that rs2814778 is predictive of WBC and neutrophil count in African Americans above beyond the previously described admixture association (P = 3.8 x 10(-5)), establishing a novel phenotype for this genetic variant.
Assuntos
População Negra/genética , Sistema do Grupo Sanguíneo Duffy/genética , Contagem de Leucócitos , Neutrófilos/química , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cromossomos Humanos Par 1/genética , Estudos de Coortes , Sistema do Grupo Sanguíneo Duffy/imunologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Fenótipo , Receptores de Superfície Celular/imunologia , População Branca/genéticaRESUMO
The prevalence of obesity (body mass index (BMI) > or =30 kg/m(2)) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (rho = -0.042, P = 1.6x10(-7)). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = -3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = -4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.
Assuntos
Negro ou Afro-Americano/genética , Cromossomos Humanos Par 5/genética , Cromossomos Humanos X/genética , Obesidade/genética , Adulto , Idoso , Alelos , Índice de Massa Corporal , Mapeamento Cromossômico , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estados Unidos , População Branca/genéticaRESUMO
Insulin is an essential hormone that regulates glucose homeostasis and metabolism. Insulin resistance (IR) arises when tissues fail to respond to insulin, and it leads to serious health problems including Type 2 Diabetes (T2D). Obesity is a major contributor to the development of IR and T2D. We previously showed that gene expression of alcohol dehydrogenase 1B (ADH1B) was inversely correlated with obesity and IR in subcutaneous adipose tissue of Mexican Americans. In the current study, a meta-analysis of the relationship between ADH1B expression and BMI in Mexican Americans, African Americans, Europeans, and Pima Indians verified that BMI was increased with decreased ADH1B expression. Using established human subcutaneous pre-adipocyte cell lines derived from lean (BMI < 30 kg m-2) or obese (BMI ≥ 30 kg m-2) donors, we found that ADH1B protein expression increased substantially during differentiation, and overexpression of ADH1B inhibited fatty acid binding protein expression. Mature adipocytes from lean donors expressed ADH1B at higher levels than obese donors. Insulin further induced ADH1B protein expression as well as enzyme activity. Knockdown of ADH1B expression decreased insulin-stimulated glucose uptake. Our findings suggest that ADH1B is involved in the proper development and metabolic activity of adipose tissues and this function is suppressed by obesity.
Assuntos
Álcool Desidrogenase/genética , Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Obesidade/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Resistência à Insulina/genética , Americanos Mexicanos/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Gordura Subcutânea/metabolismoRESUMO
OBJECTIVE: Insulinlike growth factor II (IGF-II) regulates metabolism and growth. In humans, both positive and negative relationships have been reported between serum IGF-II levels and obesity. This study assessed the relationship between serum IGF-II levels and BMI and determined whether IGF-II levels predict weight gain. METHODS: Serum samples were available from 911 American Indians with a recorded BMI. IGF-II was measured using enzyme-linked immunosorbent assay. RESULTS: Serum IGF-II levels were negatively correlated with BMI (r = -0.17, P = 4.4 × 10-7 , adjusted for age, sex, and storage time). The strongest correlation was in participants aged ≥ 30 years (r = -0.28, P = 3.4 × 10-8 , N = 349), a modest correlation was in participants aged 20 to 29 years (r = -0.15, P = 7.6 × 10-3 , N = 322), and participants aged 15 to 19 years had no correlation (r = 0.05, P = 0.48, N = 240). IGF-II levels did not predict weight gain. However, among individuals who had genotypes for 64 established obesity variants (age ≥ 20 years, N = 671), a genetic risk score for high BMI was associated with lower IGF-II (ß = -0.08 SD of IGF-II per SD of the genetic risk score, P = 0.025). CONCLUSIONS: There is a negative relationship between IGF-II levels and BMI, in which the correlation is stronger at older ages. The association between genetic risk for BMI and IGF-II levels suggests that this correlation may be due to an effect of obesity on IGF-II.
Assuntos
Índice de Massa Corporal , Fator de Crescimento Insulin-Like I/metabolismo , Adulto , Idoso , Estudos Transversais , Feminino , Genótipo , Humanos , Indígenas Norte-Americanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Obesity and energy expenditure (EE) are heritable and genetic variants influencing EE may contribute to the development of obesity. We sought to identify genetic variants that affect EE in American Indians, an ethnic group with high prevalence of obesity. METHODS: Whole-exome sequencing was performed in 373 healthy Pima Indians informative for 24-hour EE during energy balance. Genetic association analyses of all high-quality exonic variants (≥5 carriers) was performed, and those predicted to be damaging were prioritized. RESULTS: Rs752074397 introduces a premature stop codon (Cys264Ter) in DAO and demonstrated the strongest association for 24-hour EE, where the Ter allele associated with substantially lower 24-hour EE (mean lower by 268 kcal/d) and sleeping EE (by 135 kcal/d). The Ter allele has a frequency = 0.5% in Pima Indians, whereas is extremely rare in most other ethnic groups (frequency < 0.01%). In vitro functional analysis showed reduced protein levels for the truncated form of DAO consistent with increased protein degradation. DAO encodes D-amino acid oxidase, which is involved in dopamine synthesis which might explain its role in modulating EE. CONCLUSION: Our results indicate that a nonsense mutation in DAO may influence EE in American Indians. Identification of variants that influence energy metabolism may lead to new pathways to treat human obesity. CLINICAL TRIAL REGISTRATION NUMBER: NCT00340132.
Assuntos
Indígena Americano ou Nativo do Alasca/genética , Códon sem Sentido , D-Aminoácido Oxidase/genética , Metabolismo Energético/genética , Adolescente , Adulto , Alelos , Exoma , Feminino , Frequência do Gene , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Sequenciamento do Exoma , Adulto JovemRESUMO
BACKGROUND: Accumulating evidence suggests a cross-sectional association between oxidative stress and type 2 diabetes (T2D). Systemic oxidative stress, as measured by oxidized LDL (oxLDL), has been correlated with visceral fat. We examined the relationship between oxLDL, and T2D- and obesity-related traits in a bi-racial sample of 2985 subjects at baseline and after 7 years of follow-up. METHODS: We examined six T2D-related traits (T2D status, HbA(1c), fasting glucose, insulin, adiponectin and HOMA-IR) as well as six obesity-related traits (obesity status, BMI, leptin, % body fat, visceral and subcutaneous fat mass) using logistic and linear regression models. RESULTS: In all subjects at baseline, oxLDL was positively associated with T2D (OR = 1.3, 95% CI:1.1-1.5), fasting glucose (ss = 0.03 +/- 0.006), HbA(1c) (ss = 0.02 +/- 0.004), fasting insulin (ss = 0.12 +/- 0.02), HOMA-IR (ss = 0.13 +/- 0.02) and negatively with adiponectin (ss = -0.16 +/- 0.03), (all p < 0.001). The strength and magnitude of these associations did not differ much between blacks and whites. In both blacks and whites, oxLDL was also associated with obesity (OR = 1.3, 95% CI:1.1-1.4) and three of its related traits (ss = 0.60 +/- 0.14 for BMI, ss = 0.74 +/- 0.17 for % body fat, ss = 0.29 +/- 0.06 for visceral fat; all p < 0.001). Furthermore, of four traits measured after 7 years of follow-up (fasting glucose, HbA1c, BMI and % fat), their relationship with oxLDL was similar to baseline observations. No significant association was found between oxLDL and incident T2D. Interestingly, oxLDL was significantly associated with % change in T2D- and obesity-related traits in whites but not in blacks. CONCLUSION/INTERPRETATION: Our data suggest that systemic oxidative stress may be a novel risk factor for T2D and obesity.
Assuntos
Diabetes Mellitus Tipo 2/complicações , Lipoproteínas LDL/sangue , Obesidade/complicações , Adiponectina/sangue , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Glicemia/análise , Composição Corporal , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Hemoglobinas Glicadas/análise , Humanos , Insulina/sangue , Resistência à Insulina , Leptina/sangue , Masculino , Obesidade/sangue , Obesidade/fisiopatologia , Oxirredução , Valor Preditivo dos Testes , Estudos Prospectivos , Estatística como Assunto , Inquéritos e Questionários , Estados Unidos , População Branca/estatística & dados numéricosRESUMO
OBJECTIVE: Meta-analyses of genome-wide association studies in Europeans have identified > 98 loci for BMI. Transferability of these established associations in Pima Indians was analyzed. METHODS: Among 98 lead single nucleotide polymorphisms (SNPs), 82 had minor allele frequency ≥ 0.01 in Pima Indians and were analyzed for association with the maximum BMI in adulthood (n = 3,491) and BMI z score in childhood (n = 1,958). Common tag SNPs across 98 loci were also analyzed for additional signals. RESULTS: Among the lead SNPs, 13 (TMEM18, TCF7L2, MRPS33P4, PRKD1, ZFP64, FTO, TAL1, CALCR, GNPDA2, CREB1, LMX1B, ADCY9, NLRC3) were associated with BMI (P ≤ 0.05) in Pima adults. A multi-allelic genetic risk score (GRS), which summed the risk alleles for 82 lead SNPs, showed a significant trend for a positive relationship between GRS and BMI in adulthood (beta = 0.48% per risk allele; P = 1.6 × 10-9 ) and BMI z score in childhood (beta = 0.024 SD; P = 1.7 × 10-7 ). GRS was significantly associated with BMI across all age groups ≥ 5 years, except for those ≥ 50 years. The strongest association was seen in adolescence (age 14-16 years; P = 1.84 × 10-9 ). CONCLUSIONS: In aggregate, European-derived lead SNPs had a notable effect on BMI in Pima Indians. Polygenic obesity in this population manifests strongly in childhood and adolescence and persists throughout much of adult life.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Índice de Massa Corporal , Feminino , Predisposição Genética para Doença , Humanos , Estudos Longitudinais , Masculino , Fatores de RiscoRESUMO
Dyslipidemia is a major risk factor for coronary heart disease, which is the predominant cause of mortality in individuals with type 2 diabetes. To date, nine linkage studies for quantitative lipid traits have been performed in families ascertained for type 2 diabetes, individually yielding linkage results that were largely nonoverlapping. Discrepancies in linkage findings are not uncommon and are typically due to limited sample size and heterogeneity. To address these issues and increase the power to detect linkage, we performed a meta-analysis of all published genome scans for quantitative lipid traits conducted in families ascertained for type 2 diabetes. Statistically significant evidence (i.e., P < 0.00043) for linkage was observed for total cholesterol on 7q32.3-q36.3 (152.43-182 cM; P = 0.00004), 19p13.3-p12 (6.57-38.05 cM; P = 0.00026), 19p12-q13.13 (38.05-69.53 cM; P = 0.00001), and 19q13.13-q13.43 (69.53-101.1 cM; P = 0.00033), as well as LDL on 19p13.3-p12 (P = 0.00041). Suggestive evidence (i.e., P < 0.00860) for linkage was also observed for LDL on 19p12-q13.13, triglycerides on 7p11-q21.11 (63.72-93.29 cM), triglyceride/HDL on 7p11-q21.11 and 19p12-q13.13, and LDL/HDL on 16q11.2-q24.3 (65.2-130.4 cM) and 19p12-q13.13. Linkage for lipid traits has been previously observed on both chromosomes 7 and 19 in several unrelated studies and, together with the results of this meta-analysis, provide compelling evidence that these regions harbor important determinants of lipid levels in individuals with type 2 diabetes.
Assuntos
Diabetes Mellitus Tipo 2/genética , Dislipidemias/genética , Ligação Genética/genética , Genoma Humano , Locos de Características Quantitativas/genética , Feminino , Humanos , Masculino , Linhagem , Grupos RaciaisRESUMO
The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (-243 A>G, +61450 C>A, and +83897 T>A) single nucleotide polymorphisms (SNPs) within glutamate decarboxylase 2 (GAD2) were found to be associated with class III obesity (body mass index > 40 kg/m2). The association was observed among 188 families (612 individuals) segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (-243 A>G) were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase-GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the -243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the -243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83-1.18, p = 0.89) in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the -243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90-1.36, p = 0.28) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the -243 A>G SNP that does not support a pathophysiological role for this variant in obesity. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, overinterpretation of marginal data, population stratification, and biological plausibility) are also discussed in the context of GAD2 and severe obesity.