Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364541

RESUMO

Soil aggregates are essential functional units involved in soil carbon sequestration, particularly in saline-sodic soils prone to severe carbon loss. In the present study, the distribution of aggregate-associated carbon fractions and their influencing factors were investigated after artificial utilization of saline soil in the Songnen Plain, Northeast China. Physicochemical properties, enzymatic activities, and bacterial communities were measured in various hierarchical aggregates among two natural land-use types (saline wasteland and degraded grassland) and three anthropogenic land-use types (artificial forest, upland field, and paddy field). The results indicated that, compared to saline wasteland, anthropogenic land use was witnessed an increase in macroaggregate proportions, and PF in large macroaggregates increased the most, while UF and FL were mainly increased in small macroaggregates. After transforming from natural land to anthropogenic land, the aggregate-associated carbon fractions (total organic carbon, readily soluble organic carbon, dissolved organic carbon, and microbial biomass carbon) increased, especially in small macroaggregates. All enzyme activities increased after artificial utilization, hydrolase (urease, amylase, and invertase), catalase, and ß-glucosidase activities were highest in the small macroaggregates. Bacterial biomass was increased in all three aggregate types compared to natural land. Due to the influence of various factors on soil carbon storage, through partial least squares path modeling revealed that large macroaggregates were conducive to carbon storage. These findings suggested that artificial utilization of saline soil can increase large macroaggregate proportions and the abundance of aggregate-associated carbon, resulting in increased soil carbon stocks, with PF having the greatest carbon sequestration capacity.


Assuntos
Carbono , Solo , Carbono/análise , Solo/química , Sequestro de Carbono , China , Florestas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa