Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Res ; 203: 111817, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34352233

RESUMO

Hydrogen peroxide (H2O2) is evaluated as a potential replacement for chlorine to control biofouling in membrane bioreactors (MBRs). However, H2O2 might diffuse into the mixed liquor and damage microorganisms during membrane cleaning. This study comprehensively analyzed the impacts of H2O2 on microbes. Key enzymes involved in phenol biodegradation were inhibited with H2O2 concentration increased, and thus phenol degradation efficiency was decreased. Increase of lactic dehydrogenase (LDH) and intracellular reactive oxygen species (ROS) indicated more severe cell rupture with H2O2 concentration increased. At the same H2O2 concentration, Extracellular polymeric substances (EPS) extraction further led to inhibiting the activity of key enzymes, decreasing phenol degradation efficiency, and enhancing LDH release and ROS production, demonstrating that the existence of EPS moderated the adverse impacts on microbes. Spectroscopic characterization revealed the increase of H2O2 decreased tryptophan protein-like substances, protein-associated bonds and polysaccharide-associated bonds. Hydroxyl and amide groups in EPS were attacked, which might lead to the consumption of H2O2, indicated EPS protect the microorganism through sacrificial reaction with H2O2.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Reatores Biológicos , Peróxido de Hidrogênio , Indicadores e Reagentes
2.
Fish Shellfish Immunol ; 93: 726-731, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31265912

RESUMO

Application of traditional bait in aquaculture caused environment pollution and disease frequent occurrence. Residual coconut could be re-utilized to culture Spinibarbus sinensis as dietary supplement. Therefore, a novel integrated system of the improvement of yield, antioxidant and nonspecific immunity of Spinibarbus sinensis by dietary residual coconut was proposed and investigated. Spinibarbus sinensis could grow well in all supplement residual coconut groups. Survival rate, yield, whole fish body composition under 15-45% groups were increased compared with control group (CK). Bioactive substances (polyphenols and vitamin) in residual coconut enhanced AKP, ACP, phagocytic, SOD, CAT activities through up-regulating AKP, ACP, SOD, CAT genes expression levels. Theoretical analysis showed bioactive substances regulated these genes expressions and enzyme activities as stimulus signal, component, active center. Moreover, residual coconut improved mTOR and NF-kB signaling pathway. Furthermore, residual coconut inhibited Aeromonas hydrophila that increased resistance to diseases. This technology completed the solid waste recovery and the Spinibarbus sinensis culture simultaneously.


Assuntos
Antioxidantes/metabolismo , Óleo de Coco/metabolismo , Cyprinidae/imunologia , Resistência à Doença/imunologia , Imunidade Inata/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ração Animal/análise , Animais , Aquicultura/métodos , Óleo de Coco/administração & dosagem , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estudos de Viabilidade
3.
Water Sci Technol ; 71(12): 1823-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26067502

RESUMO

Central composite design and response surface methodology (RSM) were implemented to optimize the operational parameters for a cross-flow aerobic sludge reactor (CFASR) in remedying mixed printing and dyeing wastewater (MPDW). The individual and interactive effects of three variables, hydraulic retention time (HRT), pH and sludge loading rate (SLR), on chemical oxygen demand (COD) and terephthalic acid (TA) removal rates were evaluated. For HRT of 15.3-19.8 hours, pH of 7.2-8.1 and SLR of 0.4-0.6 kg chemical oxygen demand (COD) per kg mixed liquor suspended solids per day, COD and TA removal rates of the CFASR exceeded 85% and 90%, respectively. The check experiment revealed that the effluent from the optimized CFASR was stable below the limitation of 100 mg COD/L and the TA concentration decreased by 6.0% compared to the usual CFASR. The results verified that the RSM was useful for optimizing the operation parameters of the CFASR in remedying MPDW.


Assuntos
Reatores Biológicos , Ácidos Ftálicos/química , Esgotos/química , Aerobiose , Análise da Demanda Biológica de Oxigênio , Corantes , Eliminação de Resíduos Líquidos , Águas Residuárias/química
4.
Pharmacology ; 94(5-6): 273-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25500932

RESUMO

BACKGROUND: Recent studies have suggested that some single nucleotide polymorphisms (SNPs) in the human µ-opioid receptor gene (OPRM1) affect the postoperative analgesic efficacy of opioids and their side effects. In this study, we assessed the association between SNPs in the OPRM1 gene and intraoperative remifentanil consumption as well as perioperative side effects during gynecological hysteroscopic surgery in women from Northern China. METHODS: We analyzed 178 women undergoing gynecological hysteroscopic surgery. SNP genotyping was performed using the SNaPshot method. The state anxiety index (SAI) and pressure pain threshold (PPT) of all patients were assessed preoperatively. Monitored anesthesia care was maintained by the intravenous infusion of remifentanil. Intraoperative remifentanil usage and perioperative side effects were recorded. Statistical analyses were performed using SPSS software. RESULTS: Patients carrying one or two copies of the minor allele (G allele) of rs558025 required significantly more intraoperative remifentanil than patients without the minor allele (p = 0.001, corrected p = 0.006). There were no significant associations between the six SNPs and various clinical characteristics. No significant associations between the six SNPs and PPT or SAI were found in our study. CONCLUSIONS: SNP rs558025 in the OPRM1 gene was associated with intraoperative remifentanil consumption during gynecological hysteroscopic surgery in our subjects.


Assuntos
Analgésicos Opioides/uso terapêutico , Anestésicos Intravenosos/uso terapêutico , Povo Asiático/genética , Dor/tratamento farmacológico , Piperidinas/uso terapêutico , Receptores Opioides mu/genética , Adulto , Analgésicos Opioides/efeitos adversos , Anestésicos Intravenosos/efeitos adversos , Feminino , Genótipo , Humanos , Histeroscopia , Dor/genética , Período Perioperatório , Piperidinas/efeitos adversos , Polimorfismo de Nucleotídeo Único , Período Pós-Operatório , Remifentanil
5.
Water Res ; 257: 121670, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723347

RESUMO

In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.


Assuntos
Reatores Biológicos , Coque , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Análise da Demanda Biológica de Oxigênio , Poluentes Químicos da Água , Anaerobiose , Catálise
6.
Burns Trauma ; 11: tkad029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465279

RESUMO

Burn injuries are a significant cause of death worldwide, leading to systemic inflammation, multiple organ failure and sepsis. The progression of burn injury is explicitly correlated with mitochondrial homeostasis, which is disrupted by the hyperinflammation induced by burn injury, leading to mitochondrial dysfunction and cell death. Mitophagy plays a crucial role in maintaining cellular homeostasis by selectively removing damaged mitochondria. A growing body of evidence from various disease models suggest that pharmacological interventions targeting mitophagy could be a promising therapeutic strategy. Recent studies have shown that mitophagy plays a crucial role in wound healing and burn injury. Furthermore, chemicals targeting mitophagy have also been shown to improve wound recovery, highlighting the potential for novel therapeutic strategies based on an in-depth exploration of the molecular mechanisms regulating mitophagy and its association with skin wound healing.

7.
Int J Biol Sci ; 19(14): 4689-4708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781040

RESUMO

Nucleolar and spindle-associated protein 1 (NUSAP1) is a microtubule-associated protein that plays a crucial role in mitosis. Despite initial reports suggesting a potential involvement of NUSAP1 in tumor progression and malignant cell regulation, there has been no systematic analysis of its role in the tumor immune microenvironment, nor its predictive value for prognosis and immunotherapy response across different cancer types. In this study, we analyze NUSAP1 mRNA and protein expression levels in various human normal and tumor tissues, using data from TCGA, GTEx, CPTAC, HPA databases, and clinical samples. Our findings reveal that NUSAP1 is highly expressed in multiple tumor tissues across most cancer types and is primarily expressed in malignant and immune cells, according to single-cell sequencing data from the TISCH database. Prognostic analysis based on curated survival data from the TCGA database indicates that NUSAP1 expression levels can predict clinical outcomes for 26 cancer types. Furthermore, Gene Set Enrichment Analysis (GSEA) suggests that NUSAP1 promotes cell proliferation, tumor cell invasion, and regulation of anti-tumor response. Analysis of immune score, immune cell infiltration, and anti-cancer immunity cycle using ESTIMATE, TIMER, and TIP databases show that high NUSAP1 levels are associated with low CD4+T and NKT cell infiltration but high Th2 and MDSC infiltration, inversely correlated with antigen-presenting molecules and positively correlated with a variety of immune negative regulatory molecules. Notably, patients with melanoma, lung, and kidney cancer with high NUSAP1 expression levels have shorter survival times and lower immunotherapy response rates. Using Cmap analysis, we identify Entinostat and AACOCF3 as potential inhibitors of NUSAP1-mediated pro-oncogenic effects. In vitro and in vivo experiments further confirm that NUSAP1 knockdown significantly reduces the proliferation ability of A549 and MCF-7 cells. Overall, our study highlights the potential of NUSAP1 expression as a novel biomarker for predicting prognosis and immuno-therapeutic efficacy across different human cancers and suggests its potential for developing novel antitumor drugs or improving immunotherapy.


Assuntos
Neoplasias Renais , Proteínas Associadas aos Microtúbulos , Humanos , Linhagem Celular Tumoral , Proteínas Associadas aos Microtúbulos/metabolismo , Proliferação de Células/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Imunoterapia , Microambiente Tumoral/genética
8.
Bioresour Technol ; 361: 127725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926557

RESUMO

An eco-friendly strategy for mariculture wastewater treatment using an electric field attached membrane bioreactor (E-MBR) was evaluated and compared with a conventional membrane bioreactor (C-MBR). The removal efficiencies of total nitrogen (TN) and chemical oxygen demand (COD) increased significantly and the membrane fouling rate reduced by 44.8% in the E-MBR. The underlying mechanisms included the enriched nitrifiers and denitrifiers, the enhanced salinity-resistance, the increased activities and upregulated genes of key enzymes involved in nitrification and denitrification for improving the performance of mariculture wastewater treatment, and the enriched extracellular polymeric substance (EPS)-degrading genera, the downregulated EPS biosynthesis genes, the repressed biofilm-forming bacteria, the enhanced zeta potential absolute value and the generated H2O2 for membrane fouling mitigation by electrical stimulation. Compared with the C-MBR, the energy consumption, carbon emissions, and nitrogen footprint were reduced. These findings provide novel insights into mariculture wastewater treatment using an applied electric field.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias , Reatores Biológicos/microbiologia , Peróxido de Hidrogênio , Membranas Artificiais , Nitrogênio , Esgotos/microbiologia , Águas Residuárias/química
9.
Water Res ; 213: 118153, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152135

RESUMO

Electrochemical anaerobic membrane bioreactor attracted attention due to stable treatment quality with low footprint, and draw solute has significant effect on the sludge characteristics and membrane fouling performance. In this pilot-scale study, an electrochemical anaerobic membrane bioreactor (E-AnMBR) was proposed for treating pesticide wastewater at different hydraulic retention times (HRTs), demonstrating that E-AnMBR was superior on improvement of sludge characteristics and mitigation of membrane fouling, compared with the conventional anaerobic membrane bioreactor (C-AnMBR). E-AnMBR reduced sludge yield by 41.2 ± 6.7% and the SVI was significantly decreased by 32.5±13.8%. The accumulation of VFA in E-AnMBR was slighter than that of C-AnMBR, and the minimum average VFA was 255±6 mg/L. The methane yield of E-AnMBR (0.22-0.29 L CH4/g CODremoved) was 1.2-1.4 times than that of C-AnMBR. The EPS contents in suspended and attached sludge of E-AnMBR were significantly reduced by 41.8 ± 3.3% and 77.4 ± 14.5% than that of C-AnMBR, respectively. These results suggested that E-AnMBR has lower sludge disposal pressure, higher stability and methane recovery potential. Not only that, E-AnMBR successfully reduced membrane resistance, delaying the fouling rate by 31.0-38.5%. Finally, the linear relationship between EPS characteristics and membrane pollution was determined.

10.
Bioresour Technol ; 346: 126518, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896261

RESUMO

The performance of the combination system of tapered variable diameter biological fluidized bed (TVDBFB) with electrochemistry (EC) was evaluated for removing azimsulfuron and zoxamide under different temperatures and influent concentrations. Maximum removal efficiency of azimsulfuron and zoxamide could reach 94% and 98% under higher influent concentration (about 780 mg/L). As temperature decreased from 32 ℃ to 8 ℃, the mSe increased from 48% to 56%, and the mSo and mSxv decreased from 30% to 22% and 27% to 24%, respectively. As the influent COD equivalent concentration of azimsulfuron and zoxamide enhanced from 260 mg/L to 780 mg/L, the Kd increased from 0.06 d-1 to 0.23 d-1. Temperature and influent concentration were main influencing factors of DHA, ATP and ETS. Increasing aeration in TVDBFB and HRT in EC under shock conditions could improve azimsulfuron and zoxamide removal efficiency, however, it was also accompanied by higher carbon emissions.


Assuntos
Reatores Biológicos , Carbono , Amidas , Eletroquímica , Metabolismo Energético , Pirazóis , Sulfonamidas , Eliminação de Resíduos Líquidos
11.
Bioresour Technol ; 346: 126608, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954355

RESUMO

Optimization in performance and membrane fouling of an electrochemical anaerobic membrane bioreactor (R1) for treating pesticide wastewater was investigated and compared with a conventional anaerobic membrane bioreactor (R2). The maximum COD removal efficiency of R2 was 80.1%, 80.0%, 67.4%, 61.1% with HRT of 96, 72, 48 and 24 h, which of R1 was enhanced to 84.7%, 84.3%, 82.0% and 66.3%. These results demonstrated that the optimum HRT of R1 was shortened to 48 h, which of R2 required 72 h. R1 reduced the contents of particulate and colloidal COD, and the fraction of COD converted to sludge was 5.0-8.2% lower than that of R2. The fouling rate was 0.99-1.44 kPa/d and reduced by 31.0%-38.5% compared with R2. Detoxification was enhanced by 7.8-47.7% with the assistance of bio-electrochemistry. Ultimately, ensuring similar performance, R1 achieved a 65.6% improvement in environmental benefit, a 26.3% and 38.9% reduction in unit capital and operating costs.


Assuntos
Praguicidas , Águas Residuárias , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Eletroquímica , Membranas Artificiais , Praguicidas/toxicidade , Esgotos , Eliminação de Resíduos Líquidos
12.
Bioresour Technol ; 330: 124989, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33765630

RESUMO

In this study, the removal efficiency of nitrogen, specific nitrification rate (SNR), specific denitrification rate (SDNR) and compliance rate of the novel tapered variable diameter biological fluidized bed (TVDBFB) and anoxic/oxic (AO) process were compared at different temperatures. The results showed that the optimal TN, NH4+-N, and TKN removal efficiencies of the TVDBFB were 76%, 89% and 88%, respectively, and those of AO were 65%, 67% and 69%, respectively. The SNR and SDNR of the TVDBFB were significantly higher than those of AO. The TVDBFB had a smaller footprint than AO. The alkalinity/NH4+-N, BOD5/TN and temperature play important roles in the compliance rate. Increasing the carrier packing rate has emerged as a new strategy for enhancing the compliance rate. Mathematical models were developed and determined to be well-fitted with the experimental values, which can be employed to predict the SNR and SDNR of the TVDBFB.


Assuntos
Praguicidas , Águas Residuárias , Reatores Biológicos , Desnitrificação , Nitrificação , Nitrogênio , Eliminação de Resíduos Líquidos
13.
Bioresour Technol ; 336: 125285, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34051570

RESUMO

In this study, a novel combination system of the tapered variable diameter biological fluidized bed (TVDBFB) with electrochemistry (EC) has been developed and its performances are investigated at different seasons. The results showed that the COD removal efficiency of TVDBFB increased from 61% to 67% and compliance rate increased from 84% to 88% when the carrier packing rate increased from 15% to 30% and temperature was 12 ℃. However, COD removal efficiency and compliance rate increased to 87% and 100% when EC was a post treatment unit. The mathematical models could fit well with the attached biomass, which can be applied to reflect and predict the biomass per unit carrier under different conditions, and the EC removal of COD follow the first-order reaction kinetic model. The economic and environmental benefit analysis indicated that TVDBFB and EC were feasible for treating pesticide wastewater.


Assuntos
Praguicidas , Águas Residuárias , Reatores Biológicos , Eletroquímica , Modelos Teóricos , Temperatura , Eliminação de Resíduos Líquidos
14.
Bioresour Technol ; 304: 123014, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088628

RESUMO

In this study, a lab-scale multiple draft tubes airlift loop membrane bioreactor (Mt-ALMBR) was used for treating acidic 7-amino cephalosporanic acid (7-ACA) wastewater under different pHs (3.54-6.20) and hydraulic retention time (HRT) (48 h, 36 h, 24 h and 16 h). During about 200 days operation, under HRT of 48 h and pH condition about 6.0, the optimum average COD and BOD5 removal rates were reach to 84.4 ± 2.1% and 94.9 ± 0.8%, and the highest 7-ACA removal rate also observed as 77.6%. Biodegradation, membrane rejection, hydrolysis and sludge adsorption were the four main pathways of 7-ACA removal. With the increase of pH, biodegradation, membrane rejection and hydrolysis had significant positive impacts on 7-ACA removal, while adsorption had a negative impact. Moreover, mathematical models for 7-ACA removal rate and pH were calculated to guide the operation of Mt-ALMBR. Biodegradation was the main pathway to remove 7-ACA when pH was >4.17.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Aminoácidos Acídicos , Reatores Biológicos , Esgotos
15.
Bioresour Technol ; 311: 123507, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32413642

RESUMO

The proper choice of dissolved oxygen (DO) is important in aerobic treatment. In this paper, a multi-stage vertical variable diameter membrane bioreactor was developed to treat pharmaceutical wastewater containing 6-APA and ceftriaxone sodium. In the 180 days of operation, the performance of COD, BOD5, 6-APA, ceftriaxone sodium removal, sludge index, and microbial enzyme activity under different DOs (from 0.5 to 6.0 mg/L) were investigated. The results showed that the optimal range of DO was 1.5-2.1 mg/L, and the highest removal rates of COD and BOD5 were observed 87.3%±2.4% and 95.3%±1.8%, the corresponding effluent COD and BOD5 were 189 mg/L and 24 mg/L, respectively. To reduce the energy consumption and ensure stability of DO in the reactor, a control strategy based on an improved differential evolution BP fuzzy neural network was built and found that the performance and cost of the controlled DO were improved effectively than that of uncontrolled DO.


Assuntos
Preparações Farmacêuticas , Águas Residuárias , Reatores Biológicos , Oxigênio , Eliminação de Resíduos Líquidos
16.
Bioresour Technol ; 305: 123070, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32120235

RESUMO

This paper focused on the feasibility and performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater at different COD loading rates (LRs) from 2.02 ± 0.13 to 6.09 ± 0.14 kgCOD/(m3·d). Open-circuit UBES had a lower average COD removal rate of 62.4 ± 4.7% in Run2, and the accumulation of volatile fatty acid (VFA) was occurred. However, closed-circuit UBES can alleviate the accumulation of VFA (which was decreased from 720.4 to 102.4 mg/L), the highest average COD, SMX removal rates were 85.7 ± 3.2% and 73.7 ± 2.0%, respectively. The closed-circuit UBES can withstand more than 3 times LR than open-circuit UBES, which proved that the ability of microorganisms to resist toxic substance stress was strengthened. And the mathematical models for pollutants removal rate were established and well interpreted the results, which also can guide the operation of UBES.

17.
J Environ Sci (China) ; 21(11): 1503-12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20108682

RESUMO

A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH(4+)-N), turbidity and anionic surfactants (LAS) was investigated under different conditions. It was observed that the effluent COD, NH(4+)-N, turbidity and LAS flocculated in ranges of 0.19-0.85 mg/L, 0.03-0.18 mg/L, 0.0-0.15 NTU and 0.0-0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L, 79.5-129.3 mg/L, 110-181.1NTU and 4.9-5.4 mg/L. The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH(4+)-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH(4+)-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH(4+)-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.


Assuntos
Sistemas Ecológicos Fechados , Membranas Artificiais , Redes Neurais de Computação , Nitrogênio/química , Tensoativos/química , Poluentes Químicos da Água/química , Simulação por Computador , Nefelometria e Turbidimetria , Navios
18.
Water Res ; 164: 114915, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421511

RESUMO

This paper focused on the performance of an up-flow bio-electrochemical system (UBES) for treating the ß-lactams pharmaceutical wastewater under different hydraulic retention time (HRT). UBES is added a bio-electrochemical system below the three-phase separator based on up-flow anaerobic sludge blanket (UASB). Comparisons of chemical oxygen demand (COD) removal, accumulation of volatile fatty acid (VFA) and biogas production were investigated during the 316-day operation time, which was divided into five parts with HRT of 96 h, 72 h, 48 h, 36 h and 20 h, respectively. The average COD removal efficiency of UBES could reach 45.3 ±â€¯7.5%, 72.2 ±â€¯3.5%, 86.2 ±â€¯1.4%, 75.9 ±â€¯1.8% and 64.9 ±â€¯2.0%, which were 2.4%, 6.1%, 6.4%, 10.2%, 8.7% more than those of UASB under different HRTs, respectively. Biogas production as well as methane production of UBES were significantly higher than UASB during the whole changing HRT process, the maximum methane yield of UBES was 0.31 ±â€¯0.07 L/gCODremoved. Accumulation of VFA in UBES was discovered to be lighter than UASB, the minimum average VFA in UBES was 131.9 ±â€¯18.5 mg/L, which was obtained at HRT of 48 h. These results proved that UBES can slow down the inhibition of VFA on methanogens to make sure a good performance on COD removal and biogas production than UASB. Moreover, the relationships between methane production and VFA, biogas production and COD consumption were analyzed. A cost and benefit were analyzed for evaluating the potential of UBES in practical applications compared with UASB. Finally, radial basis function neural network (RBFNN) model was developed and fitted well with the experimental data, which can be employed to predict the effluent quality of the UBES and UASB.


Assuntos
Preparações Farmacêuticas , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Esgotos , Eliminação de Resíduos Líquidos , beta-Lactamas
19.
J Hazard Mater ; 342: 383-391, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28850916

RESUMO

Tetrahydrofuran (THF) is one of the most representative characteristics of pollutant in pharmaceutical industry usually has high biological toxicity, making it difficult to treat. In this study, a pilot scale anaerobic membrane bioreactor (AnMBR) was employed to treat THF pharmaceutical wastewater under different hydraulic retention time (HRT). During the 80-day operating time, chemical oxygen demand (COD) and THF removal efficiencies reached 95.3% and 98.5% when HRT was above 24h. Mixed liquid suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) in the attached sludge on membrane surface showed a trend of rising on first 28days (48h-36h) and then decreasing. Protein is the major component of extracellular polymeric substances (EPS) independent of changes in HRT. The study concludes that THF pharmaceutical wastewater can be effectively remedied in the AnMBR system at low HRT.


Assuntos
Reatores Biológicos , Furanos/química , Esgotos/química , Águas Residuárias/análise , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Preparações Farmacêuticas , Polímeros , Águas Residuárias/química
20.
Bioresour Technol ; 269: 319-328, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30195224

RESUMO

A pilot-scale anaerobic membrane bioreactor (AnMBR) was operated for 435 days in this study, aiming to treat pharmaceutical solvent wastewater containing m-Cresol (MC), isopropanol (IPA) and N,N-Dimethylformamide (DMF) pollutants at different temperatures of 35 ±â€¯3 °C, 25 ±â€¯3 °C, 15 ±â€¯3 °C and 25 ±â€¯3 °C, respectively. The reactor reached average total removal efficiencies of about 96%, 97.2% and 98% of MC, IPA and DMF at psychrophilic condition (15 ±â€¯3 °C). Higher physical removal rate was obtained at 15 ±â€¯3 °C due to the important contribution of membrane filtration. At this stage, the biogas production, methane content and specific methanogenic activity and extracellular polymeric substances of suspended sludge were observed with the lowest level. Moreover, the kinetic models for solvent degradation were established at different temperatures, results showed the smaller maximum specific substrate degradation rate of MC and IPA, besides, the lowest degradation rate of three solvents were obtained at 15 ±â€¯3 °C.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Metano , Esgotos , Solventes , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa