Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 16(5): e1008361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463812

RESUMO

Osteocalcin (OCN), the most abundant noncollagenous protein in the bone matrix, is reported to be a bone-derived endocrine hormone with wide-ranging effects on many aspects of physiology, including glucose metabolism and male fertility. Many of these observations were made using an OCN-deficient mouse allele (Osc-) in which the 2 OCN-encoding genes in mice, Bglap and Bglap2, were deleted in ES cells by homologous recombination. Here we describe mice with a new Bglap and Bglap2 double-knockout (dko) allele (Bglap/2p.Pro25fs17Ter) that was generated by CRISPR/Cas9-mediated gene editing. Mice homozygous for this new allele do not express full-length Bglap or Bglap2 mRNA and have no immunodetectable OCN in their serum. FTIR imaging of cortical bone in these homozygous knockout animals finds alterations in the collagen maturity and carbonate to phosphate ratio in the cortical bone, compared with wild-type littermates. However, µCT and 3-point bending tests do not find differences from wild-type littermates with respect to bone mass and strength. In contrast to the previously reported OCN-deficient mice with the Osc-allele, serum glucose levels and male fertility in the OCN-deficient mice with the Bglap/2pPro25fs17Ter allele did not have significant differences from wild-type littermates. We cannot explain the absence of endocrine effects in mice with this new knockout allele. Possible explanations include the effects of each mutated allele on the transcription of neighboring genes, or differences in genetic background and environment. So that our findings can be confirmed and extended by other interested investigators, we are donating this new Bglap and Bglap2 double-knockout strain to the Jackson Laboratories for academic distribution.


Assuntos
Sistema Endócrino/fisiologia , Osteocalcina/genética , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Sistema Endócrino/metabolismo , Feminino , Fertilidade/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocalcina/deficiência
3.
Ophthalmic Genet ; 44(5): 496-500, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36446546

RESUMO

BACKGROUND: Osteopathia striata combined with cranial sclerosis (OS-CS) is an inherited skeletal dysplasia that manifests with macrocephaly, orofacial abnormalities, thickened craniofacial bones, and vertically oriented radiodensities of the long bones. CASE REPORT: Here, we present a severe case of OS-CS in a 4-year-old girl causing optic neuropathy as shown by radiographic evidence, ophthalmic findings, and histopathology. Previous genetic testing in this patient revealed a de novo heterozygous mutation in AMER1 (c.1057C>T, p.Arg353Ter). Although the patient had a pre-existing, appropriately functioning, ventriculoperitoneal (VP) shunt, a subsequent MRI of the brain and orbits showed narrowing of the bilateral optic nerve canals secondary to osseous thickening causing bilateral optic nerve atrophy, worse on the left. The patient underwent staged bilateral orbital osteotomies, optic canal decompression, and bilateral frontal craniotomy, and at 11 months postoperatively, her vision remained stable. Conclusions: While up to 50% of the patients with OS-CS may experience hearing loss due to cranial nerve compression, we present a case of severe visual loss secondary to OS-CS-associated optic nerve compression.


Assuntos
Doenças do Nervo Óptico , Osteocondrodisplasias , Osteosclerose , Feminino , Humanos , Pré-Escolar , Osteosclerose/complicações , Osteosclerose/genética , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/etiologia , Nervo Óptico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa