Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
2.
Gastroenterology ; 165(3): 629-646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247644

RESUMO

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Homeostase , Temperatura Alta , Fator de Crescimento Insulin-Like I/genética , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteoma/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
3.
Small ; 20(2): e2305670, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658521

RESUMO

N-type Mg3 Sb2 -based thermoelectric materials show great promise in power generation due to their mechanical robustness, low cost of Mg, and high figure of merit (ZT) over a wide range of temperatures. However, their poor thermal stability hinders their practical applications. Here, MgB2 is introduced to improve the thermal stability of n-type Mg3 Sb2 . Enabled by MgB2 decomposition, extra Mg can be released into the matrix for Mg compensation thermodynamically, and secondary phases of Mg─B compounds can kinetically prevent Mg diffusion along grain boundaries. These synergetic effects inhibit the formation of Mg vacancies at elevated temperatures, thereby enhancing the thermal stability of n-type Mg3 Sb2 . Consequently, the Mg3.05 (Sb0.75 Bi0.25 )1.99 Te0.01 (MgB2 )0.03 sample exhibits negligible variation in thermoelectric performance during the 120-hour continuous measurement at 673 K. Moreover, the ZT of n-type Mg3 Sb2 can be maintained by adding MgB2 , reaching a high average ZT of ≈1.1 within 300-723 K. An eight-pair Mg3 Sb2 -GeTe-based thermoelectric device is also fabricated, achieving an energy conversion efficiency of ≈5.7% at a temperature difference of 438 K with good thermal stability. This work paves a new way to enhance the long-term thermal stability of n-type Mg3 Sb2 -based alloys and other thermoelectrics for practical applications.

4.
Funct Integr Genomics ; 23(2): 147, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145301

RESUMO

Ovarian cancer (OC) has the worst prognosis among gynecological malignancies. Cisplatin (CDDP) is one of the most commonly used treatments for OC, but recurrence and metastasis are common due to endogenous or acquired resistance. High expression of ATP-binding cassette (ABC) transporters is an important mechanism of resistance to OC chemotherapy, but targeting ABC transporters in OC therapy remains a challenge. The expression of sortilin-related receptor 1 (SORL1; SorLA) in the response of OC to CDDP was determined by analysis of TCGA and GEO public datasets. Immunohistochemistry and western blotting were utilized to evaluate the expression levels of SORL1 in OC tissues and cells that were sensitive or resistant to CDDP treatment. The in vitro effect of SORL1 on OC cisplatin resistance was proven by CCK-8 and cell apoptosis assays. The subcutaneous xenotransplantation model verified the in vivo significance of SORL1 in OC. Finally, the molecular mechanism by which SORL1 regulates OC cisplatin resistance was revealed by coimmunoprecipitation, gene set enrichment analysis and immunofluorescence analysis. This study demonstrated that SORL1 is closely related to CDDP resistance and predicts a poor prognosis in OC. In vivo xenograft experiments showed that SORL1 knockdown significantly enhanced the effect of CDDP on CDDP-resistant OC cells. Mechanistically, silencing of SORL1 inhibits the early endosomal antigen 1 (EEA1) pathway, which impedes the stability of ATP-binding cassette B subfamily member 1 (ABCB1), sensitizing CDDP-resistant OC cells to CDDP. The findings of this study suggest that targeting SORL1 may represent a promising therapeutic approach for overcoming CDDP resistance in OC.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cisplatino/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/farmacologia , Proteínas Relacionadas a Receptor de LDL/uso terapêutico , Proteínas de Membrana Transportadoras , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/uso terapêutico
5.
J Cell Sci ; 134(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34085694

RESUMO

The classical neurotransmitter serotonin or 5-hydroxytryptamine (5-HT), synthesized from tryptophan, can be produced both centrally and peripherally. Through binding to functionally distinct receptors, serotonin is profoundly implicated in a number of fundamental physiological processes and pathogenic conditions. Recently, serotonin has been found covalently incorporated into proteins, a newly identified post-translational modification termed serotonylation. Transglutaminases (TGMs), especially TGM2, are responsible for catalyzing the transamidation reaction by transferring serotonin to the glutamine residues of target proteins. Small GTPases, extracellular matrix protein fibronectin, cytoskeletal proteins and histones are the most reported substrates for serotonylation, and their functions are triggered by this post-translational modification. This Review highlights the roles of serotonylation in physiology and diseases and provides perspectives for pharmacological interventions to ameliorate serotonylation for disease treatment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Transglutaminases , Glutamina , Processamento de Proteína Pós-Traducional , Serotonina/metabolismo , Transglutaminases/genética
6.
Small ; 19(44): e2303840, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381087

RESUMO

N-type Mg3 (Bi, Sb)2 -based thermoelectric (TE) alloys show great promise for solid-state power generation and refrigeration, owing to their excellent figure-of-merit (ZT) and using cheap Mg. However, their rigorous preparation conditions and poor thermal stability limit their large-scale applications. Here, this work develops an Mg compensating strategy to realize n-type Mg3 (Bi, Sb)2 by a facile melting-sintering approach. "2D roadmaps" of TE parameters versus sintering temperature and time are plotted to understand the Mg-vacancy-formation and Mg-diffusion mechanisms. Under this guidance, high weight mobility of 347 cm2  V-1  s-1 and power factor of 34 µW cm-1  K-2 can be obtained for Mg3.05 Bi1.99 Te0.01 , and a peak ZT≈1.55 at 723 K and average ZT≈1.25 within 323-723 K can be obtained for Mg3.05 (Sb0.75 Bi0.25 )1.99 Te0.01 . Moreover, this Mg compensating strategy can also improve the interfacial connecting and thermal stability of corresponding Mg3 (Bi, Sb)2 /Fe TE legs. As a consequence, this work fabricates an 8-pair Mg3 Sb2 -GeTe-based power-generation device reaching an energy conversion efficiency of ≈5.0% at a temperature difference of 439 K, and a one-pair Mg3 Sb2 -Bi2 Te3 -based cooling device reaching -10.7 °C at the cold side. This work paves a facile way to obtain Mg3 Sb2 -based TE devices at low cost and also provides a guide to optimize the off-stoichiometric defects in other TE materials.

7.
Mol Ther ; 30(10): 3284-3299, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35765243

RESUMO

Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio = 0.50) and metastasis (hazard ratio = 0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation, and cell-cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response.


Assuntos
Neoplasias Colorretais , Terbinafina , Animais , Antifúngicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Desoxirribonucleotídeos , Disbiose , Glucosefosfato Desidrogenase , Camundongos , NADP , Terbinafina/farmacologia
8.
Small ; 17(42): e2104067, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34541782

RESUMO

Powder metallurgy introduces small structures of high-density grain boundaries into Bi2 Te3 -based alloys, which promises to enhance their mechanical and thermoelectric performance. However, due to the strong donor-like effect induced by the increased surface, Te vacancies form in the powder-metallurgy process. Hence, the as-sintered n-type Bi2 Te3 -based alloys show a lower figure of merit (ZT) value than their p-type counterparts and the commercial zone-melted (ZM) ingots. Here, boron is added to one-step-sintered n-type Bi2 Te3 -based alloys to inhibit grain growth and to suppress the donor-like effect, simultaneously improving the mechanical and thermoelectric (TE) performance. Due to the alleviated donor-like effect and the carrier mobility maintained in our n-type Bi2 Te2.7 Se0.3 alloys upon the addition of boron, the maximum and average ZT values within 298-473 K can be enhanced to 1.03 and 0.91, respectively, which are even slightly higher than that of n-type ZM ingots. Moreover, the addition of boron greatly improves the mechanical strength such as Vickers hardness and compressive strength due to the synergetic effects of Hall-Petch grain-boundary strengthening and boron dispersion strengthening. This facile and cost-effective grain boundary engineering by adding boron facilitates the practical application of Bi2 Te3 -based alloys and can also be popularized in other thermoelectric materials.

9.
J Cell Biochem ; 121(2): 1986-1997, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31693252

RESUMO

Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA-mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.


Assuntos
Biomarcadores Tumorais/metabolismo , Glicólise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Taxa de Sobrevida , Serina-Treonina Quinases TOR/genética , Proteínas com Motivo Tripartido/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Gut ; 68(11): 1994-2006, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30826748

RESUMO

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Macrófagos/fisiologia , Camundongos , Transdução de Sinais/fisiologia
12.
Biochem Biophys Res Commun ; 499(3): 584-593, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621546

RESUMO

Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal/genética , Calicreínas/genética , Neoplasias Pancreáticas/genética , Regulação para Cima/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Calicreínas/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Transdução de Sinais , Quinases da Família src/metabolismo , Neoplasias Pancreáticas
13.
J Biol Chem ; 291(8): 3905-17, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26683373

RESUMO

The normal cellular prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein. However, in pancreatic ductal adenocarcinoma cell lines, such as BxPC-3, PrP exists as a pro-PrP retaining its glycosylphosphatidylinositol (GPI) peptide signaling sequence. Here, we report the identification of another pancreatic ductal adenocarcinoma cell line, AsPC-1, which expresses a mature GPI-anchored PrP. Comparison of the 24 genes involved in the GPI anchor modification pathway between AsPC-1 and BxPC-3 revealed 15 of the 24 genes, including PGAP1 and PIG-F, were down-regulated in the latter cells. We also identified six missense mutations in DPM2, PIG-C, PIG-N, and PIG-P alongside eight silent mutations. When BxPC-3 cells were fused with Chinese hamster ovary (CHO) cells, which lack endogenous PrP, pro-PrP was successfully converted into mature GPI-anchored PrP. Expression of the individual gene, such as PGAP1, PIG-F, or PIG-C, into BxPC-3 cells does not result in phosphoinositide-specific phospholipase C sensitivity of PrP. However, when PIG-F but not PIG-P is expressed in PGAP1-expressing BxPC-3 cells, PrP on the surface of the cells becomes phosphoinositide-specific phospholipase C-sensitive. Thus, low expression of PIG-F and PGAP1 is the major factor contributing to the accumulation of pro-PrP. More importantly, BxPC-3 cells expressing GPI-anchored PrP migrate much slower than BxPC-3 cells bearing pro-PrP. In addition, GPI-anchored PrP-bearing AsPC-1 cells also migrate slower than pro-PrP bearing BxPC-3 cells, although both cells express filamin A. "Knocking out" PRNP in BxPC-3 cell drastically reduces its migration. Collectively, these results show that multiple gene irregularity in BxPC-3 cells is responsible for the formation of pro-PrP, and binding of pro-PrP to filamin A contributes to enhanced tumor cell motility.


Assuntos
Movimento Celular , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Príons/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Células CHO , Cricetinae , Cricetulus , Filaminas/genética , Filaminas/metabolismo , Glicosilfosfatidilinositóis/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Príons/genética
14.
Biochem Biophys Res Commun ; 494(1-2): 113-119, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29050937

RESUMO

Dysregulated potassium (K+) channels have previously been shown to promote the development and progression of many types of cancers. Meanwhile, K+ channels are particularly important in regulating the endocrine and exocrine functions of pancreas. However, the expression pattern and prognostic significance of K+ channels in pancreatic ductal adenocarcinoma (PDAC) remain unknown. In this study, by screening a GEO dataset containing 36 microdissected PDAC and matching normal pancreatic tissue samples, four differentially expressed K+ channels (KCNJ5, KCNJ16, KCNN4 and KCNK1) were identified in PDAC. by immunohistochemical analysis of pancreatic tissue sections from Pdx1-Cre; LSL-KrasG12D/+ mice (KC), Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) and human PDAC tissue microarrays, we found that Ca2+-activated K+ channel KCNN4 was significantly elevated in pancreatic intraepithelial neoplasia (PanIN) and PDAC epithelia compared with untransformed pancreas tissues. Higher epithelial KCNN4 expression was closely correlated with advanced TNM stages and predicted a poor prognosis in patients with PDAC. Elevated KCNN4 expression was significantly associated with shorter survival in univariable and multivariable analyses. Collectively, the identification of expression pattern of K+ channels in PDAC and its precursor PanIN demonstrates the importance of KCNN4 channel during the malignant transformation of PDAC. On the basis of the prognostic signals from two independent cohorts, KCNN4 should be considered as a promising therapeutic target.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Idoso , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Prognóstico
15.
Sci Bull (Beijing) ; 69(8): 1037-1049, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38431467

RESUMO

In thermoelectrics, doping is essential to augment the figure of merit. Traditional strategy, predominantly heavy doping, aims to optimize carrier concentration and restrain lattice thermal conductivity. However, this tactic can severely hamper carrier transport due to pronounced point defect scattering, particularly in materials with inherently low carrier mean-free-path. Conversely, dilute doping, although minimally affecting carrier mobility, frequently fails to optimize other vital thermoelectric parameters. Herein, we present a more nuanced dilute doping strategy in GeTe, leveraging the multifaceted roles of small-size metal atoms. A mere 4% CuPbSbTe3 introduction into GeTe swiftly suppresses rhombohedral distortion and optimizes carrier concentration through the aid of Cu interstitials. Additionally, the formation of multiscale microstructures, including zero-dimensional Cu interstitials, one-dimensional dislocations, two-dimensional planar defects, and three-dimensional nanoscale amorphous GeO2 and Cu2GeTe3 precipitates, along with the ensuing lattice softening, contributes to an ultralow lattice thermal conductivity. Intriguingly, dilute CuPbSbTe3 doping incurs only a marginal decrease in carrier mobility. Subsequent trace Cd doping, employed to alleviate the bipolar effect and align the valence bands, yields an impressive figure-of-merit of 2.03 at 623 K in (Ge0.97Cd0.03Te)0.96(CuPbSbTe3)0.04. This leads to a high energy-conversion efficiency of 7.9% and a significant power density of 3.44 W cm-2 at a temperature difference of 500 K. These results underscore the invaluable insights gained into the constructive role of nuanced dilute doping in the concurrent tuning of carrier and phonon transport in GeTe and other thermoelectric materials.

16.
Nat Commun ; 15(1): 5978, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013905

RESUMO

In thermoelectric, phase interface engineering proves effective in reducing the lattice thermal conductivity via interface scattering and amplifying the density-of-states effective mass by energy filtering. However, the indiscriminate introduction of phase interfaces inevitably leads to diminished carrier mobility. Moreover, relying on a singular energy barrier is insufficient for comprehensive filtration of low-energy carriers throughout the entire temperature range. Addressing these challenges, we advocate the establishment of a composite phase interface using atomic layer deposition (ALD) technology. This design aims to effectively decouple the interrelated thermoelectric parameters in ZrNiSn. The engineered coherent dual-interface energy barriers substantially enhance the density-of-states effective mass across the entire temperature spectrum while preser carrier mobility. Simultaneously, the strong interface scattering on phonons is crucial for curtailing lattice thermal conductivity. Consequently, a 40-cycles TiO2 coating on ZrNi1.03Sn0.99Sb0.01 achieves an unprecedented zT value of 1.3 at 873 K. These findings deepen the understanding of coherent composite-phase interface engineering.

17.
Oncogene ; 43(26): 1985-1999, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734828

RESUMO

Ovarian cancer is one of the most common gynecological malignant tumors with insidious onset, strong invasiveness, and poor prognosis. Metabolic alteration, particularly aerobic glycolysis, which is tightly regulated by transcription factors, is associated with the malignant behavior of OC. We screened FOXK2 in this study as a key transcription factor that regulates glycolysis in OC. FOXK2 is overly expressed in OC, and poor prognosis is predicted by overexpression. FOXK2 promotes OC cell proliferation both in vitro and in vivo and cell migration in vitro. Further studies showed that PDK2 directly binds to the forkhead-associated (FHA) domain of FOXK2 to phosphorylate FOXK2 at Thr13 and Ser30, thereby enhancing the transcriptional activity of FOXK2. FOXK2 transcriptionally regulates the expression of PDK2, thus forming positive feedback to sustain glycolysis in OC cells.


Assuntos
Proliferação de Células , Fatores de Transcrição Forkhead , Glicólise , Neoplasias Ovarianas , Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Feminino , Glicólise/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Linhagem Celular Tumoral , Fosforilação , Animais , Proliferação de Células/genética , Camundongos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Retroalimentação Fisiológica , Camundongos Nus , Prognóstico
18.
Cell Oncol (Dordr) ; 46(5): 1529-1541, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37178367

RESUMO

PURPOSE: Although immunotherapy improves clinical outcomes in several types of malignancies, as an immunologically 'cold' tumor, pancreatic ductal adenocarcinoma (PDAC) is arrantly resistant to immunotherapy. However, the role of N6-methyladenosine (m6A) modification in the immune microenvironment of PDAC is still poorly understood. METHODS: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to identify differentially expressed m6A related enzymes. The biological role and mechanism of METTL3 in PDAC growth and metastasis were determined in vitro and in vivo. RNA-sequencing and bioinformatics analysis were used to identify signaling pathways involved in METTL3. Western blot, m6A dot blot assays, co-immunoprecipitation, immunofluorescence, and flow cytometry were used to explore the molecular mechanism. RESULTS: Here, we demonstrate that METTL3, the key regulator of m6A modification, is downregulated in PDAC, and negatively correlates with PDAC malignant features. Elevated METTL3 suppresses PDAC growth and overcomes resistance to immune checkpoint blockade. Mechanistically, METTL3 promotes the accumulation of endogenous double-stranded RNA (dsRNA) through protecting m6A-transcripts from further Adenosine-to-inosine (A-to-I) editing. The dsRNA stress activates RIG-I-like receptors (RLRs) to enhance anti-tumor immunity, finally suppressing PDAC progression. CONCLUSION: Our findings indicate that tumor cell-intrinsic m6A modification participates in the regulation of tumor immune landscape. Adjusting the m6A level may be an effective strategy to overcome the resistance to immunotherapy and increase responsiveness to immunotherapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , RNA de Cadeia Dupla , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Adenosina , Microambiente Tumoral , Metiltransferases , Neoplasias Pancreáticas
19.
ACS Appl Mater Interfaces ; 15(15): 19250-19257, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37017576

RESUMO

Manipulating and integrating the microstructures at different scales is crucial to tune the electrical and thermal properties of a given compound. High-pressure sintering can modify the multiscale microstructures and thus empower the cutting-edge thermoelectric performance. In this work, the high-pressure sintering technique followed by annealing is adopted to prepare Gd-doped p-type (Bi0.2Sb0.8)2(Te0.97Se0.03)3 alloys. First, the high energy of high-pressure sintering promotes the reduction of grain size, thus increasing the content of 2D grain boundaries. Next, high-pressure sintering induces strong interior strain, where 1D dense dislocations are generated near the strain field. More interestingly, the rare-earth element Gd with a high melting temperature is dissolved into the matrix via high-pressure sintering, thus promoting the formation of 0D extrinsic point defects. This concurrently improves the carrier concentration and density-of-state effective mass, resulting in an enhanced power factor. In addition, the integrated 0D point defects, 1D dislocations, and 2D grain boundaries by high-pressure sintering strengthen phonon scattering, thereby achieving a low lattice thermal conductivity of 0.5 Wm-1 K-1 at 348 K. Consequently, a maximum zT value of ∼1.1 at 348 K is achieved in the 0.4 at % Gd-doped (Bi0.2Sb0.8)2(Te0.97Se0.03)3 sample. This work demonstrates that high-pressure sintering enables microstructure modification to enhance the thermoelectric performance of Bi2Te3-based and other bulk materials.

20.
Adv Sci (Weinh) ; 10(26): e2302688, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37386820

RESUMO

Bi2 Te3 -based alloys have great market demand in miniaturized thermoelectric (TE) devices for solid-state refrigeration and power generation. However, their poor mechanical properties increase the fabrication cost and decrease the service durability. Here, this work reports on strengthened mechanical robustness in Bi2 Te3 -based alloys due to thermodynamic Gibbs adsorption and kinetic Zener pinning at grain boundaries enabled by MgB2 decomposition. These effects result in much-refined grain size and twofold enhancement of the compressive strength and Vickers hardness in (Bi0.5 Sb1.5 Te3 )0.97 (MgB2 )0.03 compared with that of traditional powder-metallurgy-derived Bi0.5 Sb1.5 Te3 . High mechanical properties enable excellent cutting machinability in the MgB2 -added samples, showing no missing corners or cracks. Moreover, adding MgB2 facilitates the simultaneous optimization of electron and phonon transport for enhancing the TE figure of merit (ZT). By further optimizing the Bi/Sb ratio, the sample (Bi0.4 Sb1.6 Te3 )0.97 (MgB2 )0.03 shows a maximum ZT of ≈1.3 at 350 K and an average ZT of 1.1 within 300-473 K. As a consequence, robust TE devices with an energy conversion efficiency of 4.2% at a temperature difference of 215 K are fabricated. This work paves a new way for enhancing the machinability and durability of TE materials, which is especially promising for miniature devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa