Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomed Microdevices ; 20(2): 45, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29858718

RESUMO

Detection of nucleic acid molecules is one of the most pervasive assays in biology, medicine, and agriculture applications. Currently, most comely used DNA/RNA detection platforms use fluorescence labeling and require lab-scale setting for performing the assay. There is a need for developing less expensive, label-free, and rapid detection of biomolecules with minimal utilization of resources. Use of electrical approaches for detection of biomolecules by utilizing their inherent charge is a promising direction for biosensing assays. Here, we report a 1024 × 1024 array of Ion Sensitive Field Effect Transistors (ISFET) as label free sensors for detection of nucleic acid molecules. Using PNA probe functionalized on these ISFET array, we robustly detected miRNA Let-7b by measuring changes in drain current after hybridization of target molecules with concentration as low as 1 nM. We demonstrate that mismatched or non-complementary target molecules resulted in statistically smaller changes. Most importantly, the high-density sensor array shows unprecedented reliability and robustness with P values <0.0001 for all experiments. Practical implementation of this platform could have a wide range of applications in high-throughput nucleic acid genotyping, detection of amplified pathogenic nucleic acid, detection of cell-free DNA, and electrical readouts for current hybridization-based DNA biomolecular assays.


Assuntos
Técnicas Biossensoriais/instrumentação , MicroRNAs/análise , Transistores Eletrônicos , MicroRNAs/metabolismo , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/metabolismo
2.
Polymers (Basel) ; 12(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842502

RESUMO

The fatigue properties of the polymer nanocomposites reinforced with a hybrid nano-filler system have seldom studied before. Accordingly, epoxy nanocomposites with various multi-walled carbon nanotube (MWCNT)/graphene nanoplatelet (GNP) filler ratios were prepared to study comprehensively the synergistic effect of the hybrid nano-fillers on the monotonic and cyclic mechanical properties of the nanocomposites. The quasi-statically tensile properties and fatigue-life curves were experimentally determined using uncracked bulk specimens. Additionally, pre-cracked specimens were utilized to study the fracture toughness and fatigue crack growth rate of the nanocomposites. A synergistic index based on the properties of the nanocomposites with individual types of filler was proposed to evaluate the synergistic effect of two employed nano-fillers on the studied properties. The index was verified to be a highly discriminatory tool to evaluate the synergistic effect of hybrid nano-fillers on the studied mechanical properties. The experimental results show that the composites with a MWCNT:GNP ratio of 1:9 have the higher monotonic and fatigue properties than those with other filler ratios. Adding appropriate amount of CNTs can prevent the agglomeration of GNPs. The flexible CNTs bridge adjacent GNPs to constitute a favorable network for load transfer. Moreover, there is a linear relationship between the static and fatigue strengths of the studied nanocomposites. Integrated analysis of experimental data and a fracture surface study reveals that the dispersion of nano-fillers influences the mechanical properties significantly. The crack deflection effect due to the path bifurcation caused by encountering the filler cluster and the filler bridging effect are the main reinforcement mechanism of the studied properties.

3.
Materials (Basel) ; 12(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646568

RESUMO

The synergetic effect of adding multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) on the thermomechanical properties and electric resistance of epoxy polymers were experimentally analyzed in this study. The total content of two employed carbon fillers were kept constant at 0.4 wt %, and seven filler ratios between two fillers (MWCNTs:GNPs), i.e., 10:0, 1:9, 3:7, 5:5, 7:3, 9:1, and 0:10, were considered in the experimental program to investigate the influences of employed nano-filler ratios on the viscoelastic and electrical properties of the studied nanocomposites. The thermomechanical properties and the sheet resistance of the nanocomposites were analyzed using a dynamic mechanical analyzer and four-point probe, respectively. Moreover, the thermogravimetric analyzer was utilized to measure the pyrolysis temperature of the nanocomposites. Experimental results show that the synergistic effect of adding two nano-fillers were clear for the improvement of the storage moduli, glass transition temperatures, and electric conductivity. Oppositely, the employment of two fillers has a slight effect on the pyrolysis temperatures of the studied nanocomposites. The composites with the MWCNT:GNP ratio of 1:9 display the most apparent enhancement of the thermomechanical properties. The improvement results from the uniform distribution and the high aspect ratio of GNPs. The addition of a small amount of MWCNTs provides more linkage in the matrix. Moreover, the specimens with the MWCNT:GNP ratio of 1:9 shows remarkable electrical properties, which result from the large contact surface areas of GNPs with each other. The employment of few MWCNTs plays an important bridging role between the layered GNPs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa