Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36573474

RESUMO

Covalent inhibitors have received extensive attentions in the past few decades because of their long residence time, high binding efficiency and strong selectivity. Therefore, it is valuable to develop computational tools like molecular docking for modeling of covalent protein-ligand interactions or screening of potential covalent drugs. Meeting the needs, we have proposed HCovDock, an efficient docking algorithm for covalent protein-ligand interactions by integrating a ligand sampling method of incremental construction and a scoring function with covalent bond-based energy. Tested on a benchmark containing 207 diverse protein-ligand complexes, HCovDock exhibits a significantly better performance than seven other state-of-the-art covalent docking programs (AutoDock, Cov_DOX, CovDock, FITTED, GOLD, ICM-Pro and MOE). With the criterion of ligand root-mean-squared distance < 2.0 Å, HCovDock obtains a high success rate of 70.5% and 93.2% in reproducing experimentally observed structures for top 1 and top 10 predictions. In addition, HCovDock is also validated in virtual screening against 10 receptors of three proteins. HCovDock is computationally efficient and the average running time for docking a ligand is only 5 min with as fast as 1 sec for ligands with one rotatable bond and about 18 min for ligands with 23 rotational bonds. HCovDock can be freely assessed at http://huanglab.phys.hust.edu.cn/hcovdock/.


Assuntos
Algoritmos , Proteínas , Simulação de Acoplamento Molecular , Ligantes , Proteínas/química , Ligação Proteica
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36440949

RESUMO

Protein-protein interactions play an important role in many biological processes. However, although structure prediction for monomer proteins has achieved great progress with the advent of advanced deep learning algorithms like AlphaFold, the structure prediction for protein-protein complexes remains an open question. Taking advantage of the Transformer model of ESM-MSA, we have developed a deep learning-based model, named DeepHomo2.0, to predict protein-protein interactions of homodimeric complexes by leveraging the direct-coupling analysis (DCA) and Transformer features of sequences and the structure features of monomers. DeepHomo2.0 was extensively evaluated on diverse test sets and compared with eight state-of-the-art methods including protein language model-based, DCA-based and machine learning-based methods. It was shown that DeepHomo2.0 achieved a high precision of >70% with experimental monomer structures and >60% with predicted monomer structures for the top 10 predicted contacts on the test sets and outperformed the other eight methods. Moreover, even the version without using structure information, named DeepHomoSeq, still achieved a good precision of >55% for the top 10 predicted contacts. Integrating the predicted contacts into protein docking significantly improved the structure prediction of realistic Critical Assessment of Protein Structure Prediction homodimeric complexes. DeepHomo2.0 and DeepHomoSeq are available at http://huanglab.phys.hust.edu.cn/DeepHomo2/.


Assuntos
Aprendizado Profundo , Biologia Computacional/métodos , Proteínas/química , Algoritmos , Aprendizado de Máquina
3.
Proteins ; 91(12): 1658-1683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905971

RESUMO

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Conformação Proteica , Ligação Proteica , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , Software
4.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33954706

RESUMO

Cryo-electron microscopy (cryo-EM) has become one of important experimental methods in structure determination. However, despite the rapid growth in the number of deposited cryo-EM maps motivated by advances in microscopy instruments and image processing algorithms, building accurate structure models for cryo-EM maps remains a challenge. Protein secondary structure information, which can be extracted from EM maps, is beneficial for cryo-EM structure modeling. Here, we present a novel secondary structure annotation framework for cryo-EM maps at both intermediate and high resolutions, named EMNUSS. EMNUSS adopts a three-dimensional (3D) nested U-net architecture to assign secondary structures for EM maps. Tested on three diverse datasets including simulated maps, middle resolution experimental maps, and high-resolution experimental maps, EMNUSS demonstrated its accuracy and robustness in identifying the secondary structures for cyro-EM maps of various resolutions. The EMNUSS program is freely available at http://huanglab.phys.hust.edu.cn/EMNUSS.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Modelos Moleculares , Estrutura Secundária de Proteína , Software , Algoritmos , Microscopia Crioeletrônica , Bases de Dados Genéticas
5.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33693482

RESUMO

Protein-protein interactions play a fundamental role in all cellular processes. Therefore, determining the structure of protein-protein complexes is crucial to understand their molecular mechanisms and develop drugs targeting the protein-protein interactions. Recently, deep learning has led to a breakthrough in intra-protein contact prediction, achieving an unusual high accuracy in recent Critical Assessment of protein Structure Prediction (CASP) structure prediction challenges. However, due to the limited number of known homologous protein-protein interactions and the challenge to generate joint multiple sequence alignments of two interacting proteins, the advances in inter-protein contact prediction remain limited. Here, we have proposed a deep learning model to predict inter-protein residue-residue contacts across homo-oligomeric protein interfaces, named as DeepHomo. Unlike previous deep learning approaches, we integrated intra-protein distance map and inter-protein docking pattern, in addition to evolutionary coupling, sequence conservation, and physico-chemical information of monomers. DeepHomo was extensively tested on both experimentally determined structures and realistic CASP-Critical Assessment of Predicted Interaction (CAPRI) targets. It was shown that DeepHomo achieved a high precision of >60% for the top predicted contact and outperformed state-of-the-art direct-coupling analysis and machine learning-based approaches. Integrating predicted inter-chain contacts into protein-protein docking significantly improved the docking accuracy on the benchmark dataset of realistic homo-dimeric targets from CASP-CAPRI experiments. DeepHomo is available at http://huanglab.phys.hust.edu.cn/DeepHomo/.


Assuntos
Aprendizado Profundo , Simulação de Acoplamento Molecular , Proteínas/metabolismo , Software , Sítios de Ligação , Conjuntos de Dados como Assunto , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas/química
6.
Bioinformatics ; 38(17): 4109-4116, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35801933

RESUMO

MOTIVATION: Cyclization is a common strategy to enhance the therapeutic potential of peptides. Many cyclic peptide drugs have been approved for clinical use, in which the disulfide-driven cyclic peptide is one of the most prevalent categories. Molecular docking is a powerful computational method to predict the binding modes of molecules. For protein-cyclic peptide docking, a big challenge is considering the flexibility of peptides with conformers constrained by cyclization. RESULTS: Integrating our efficient peptide 3D conformation sampling algorithm MODPEP2.0 and knowledge-based scoring function ITScorePP, we have proposed an extended version of our hierarchical peptide docking algorithm, named HPEPDOCK2.0, to predict the binding modes of the peptide cyclized through a disulfide against a protein. Our HPEPDOCK2.0 approach was extensively evaluated on diverse test sets and compared with the state-of-the-art cyclic peptide docking program AutoDock CrankPep (ADCP). On a benchmark dataset of 18 cyclic peptide-protein complexes, HPEPDOCK2.0 obtained a native contact fraction of above 0.5 for 61% of the cases when the top prediction was considered, compared with 39% for ADCP. On a larger test set of 25 cyclic peptide-protein complexes, HPEPDOCK2.0 yielded a success rate of 44% for the top prediction, compared with 20% for ADCP. In addition, HPEPDOCK2.0 was also validated on two other test sets of 10 and 11 complexes with apo and predicted receptor structures, respectively. HPEPDOCK2.0 is computationally efficient and the average running time for docking a cyclic peptide is about 34 min on a single CPU core, compared with 496 min for ADCP. HPEPDOCK2.0 will facilitate the study of the interaction between cyclic peptides and proteins and the development of therapeutic cyclic peptide drugs. AVAILABILITY AND IMPLEMENTATION: http://huanglab.phys.hust.edu.cn/hpepdock/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Peptídeos Cíclicos , Software , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/metabolismo , Proteínas/química , Peptídeos/química , Dissulfetos , Ligação Proteica
7.
Bioinformatics ; 38(9): 2444-2451, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35199137

RESUMO

MOTIVATION: Protein-protein interactions (PPI) play important roles in cellular activities. Due to the technical difficulty and high cost of experimental methods, there are considerable interests towards the development of computational approaches, such as protein docking, to decipher PPI patterns. One of the important and difficult aspects in protein docking is recognizing near-native conformations from a set of decoys, but unfortunately, traditional scoring functions still suffer from limited accuracy. Therefore, new scoring methods are pressingly needed in methodological and/or practical implications. RESULTS: We present a new deep learning-based scoring method for ranking protein-protein docking models based on a 3D RepVGG network, named TRScore. To recognize near-native conformations from a set of decoys, TRScore voxelizes the protein-protein interface into a 3D grid labeled by the number of atoms in different physicochemical classes. Benefiting from the deep convolutional RepVGG architecture, TRScore can effectively capture the subtle differences between energetically favorable near-native models and unfavorable non-native decoys without needing extra information. TRScore was extensively evaluated on diverse test sets including protein-protein docking benchmark 5.0 update set, DockGround decoy set, as well as realistic CAPRI decoy set and overall obtained a significant improvement over existing methods in cross-validation and independent evaluations. AVAILABILITY AND IMPLEMENTATION: Codes available at: https://github.com/BioinformaticsCSU/TRScore.


Assuntos
Proteínas , Projetos de Pesquisa , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Proteínas/metabolismo , Ligação Proteica , Conformação Proteica , Simulação de Acoplamento Molecular
8.
J Am Chem Soc ; 144(23): 10622-10639, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35657057

RESUMO

Gram-negative bacteria, especially the ones with multidrug resistance, post dire challenges to antibiotic treatments due to the presence of the outer membrane (OM), which blocks the entry of many antibiotics. Current solutions for such permeability issues, namely lipophilic-cationic derivatization of antibiotics and sensitization with membrane-active agents, cannot effectively potentiate the large, globular, and hydrophilic antibiotics such as vancomycin, due to ineffective disruption of the OM. Here, we present our solution for high-degree OM binding of vancomycin via a hybrid "derivatization-for-sensitization" approach, which features a combination of LPS-targeting lipo-cationic modifications on vancomycin and OM disruption activity from a sensitizing adjuvant. 106- to 107-fold potentiation of vancomycin and 20-fold increase of the sensitizer's effectiveness were achieved with a combination of a vancomycin derivative and its sensitizer. Such potentiation is the result of direct membrane lysis through cooperative membrane binding for the sensitizer-antibiotic complex, which strongly promotes the uptake of vancomycin and adds to the extensive antiresistance effectiveness. The potential of such derivatization-for-sensitization approach was also supported by the combination's potent in vivo antimicrobial efficacy in mouse model studies, and the expanded application of such strategy on other antibiotics and sensitizer structures.


Assuntos
Bactérias Gram-Negativas , Vancomicina , Animais , Antibacterianos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Vancomicina/farmacologia
9.
Bioinformatics ; 37(20): 3480-3490, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33978686

RESUMO

MOTIVATION: Advances in microscopy instruments and image processing algorithms have led to an increasing number of Cryo-electron microscopy (cryo-EM) maps. However, building accurate models for the EM maps at 3-5 Å resolution remains a challenging and time-consuming process. With the rapid growth of deposited EM maps, there is an increasing gap between the maps and reconstructed/modeled three-dimensional (3D) structures. Therefore, automatic reconstruction of atomic-accuracy full-atom structures from EM maps is pressingly needed. RESULTS: We present a semi-automatic de novo structure determination method using a deep learning-based framework, named as DeepMM, which builds atomic-accuracy all-atom models from cryo-EM maps at near-atomic resolution. In our method, the main-chain and Cα positions as well as their amino acid and secondary structure types are predicted in the EM map using Densely Connected Convolutional Networks. DeepMM was extensively validated on 40 simulated maps at 5 Å resolution and 30 experimental maps at 2.6-4.8 Å resolution as well as an Electron Microscopy Data Bank-wide dataset of 2931 experimental maps at 2.6-4.9 Å resolution, and compared with state-of-the-art algorithms including RosettaES, MAINMAST and Phenix. Overall, our DeepMM algorithm obtained a significant improvement over existing methods in terms of both accuracy and coverage in building full-length protein structures on all test sets, demonstrating the efficacy and general applicability of DeepMM. AVAILABILITY AND IMPLEMENTATION: http://huanglab.phys.hust.edu.cn/DeepMM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
J Chem Inf Model ; 62(22): 5806-5820, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36342197

RESUMO

An important part in structure-based drug design is the selection of an appropriate protein structure. It has been revealed that a holo protein structure that contains a well-defined binding site is a much better choice than an apo structure in structure-based drug discovery. Therefore, it is valuable to obtain a holo-like protein conformation from apo structures in the case where no holo structure is available. Meeting the need, we present a robust approach to generate reliable holo-like structures from apo structures by ligand binding site refinement with restraints derived from holo templates with low homology. Our method was tested on a test set of 32 proteins from the DUD-E data set and compared with other approaches. It was shown that our method successfully refined the apo structures toward the corresponding holo conformations for 23 of 32 proteins, reducing the average all-heavy-atom RMSD of binding site residues by 0.48 Å. In addition, when evaluated against all the holo structures in the protein data bank, our method can improve the binding site RMSD for 14 of 19 cases that experience significant conformational changes. Furthermore, our refined structures also demonstrate their advantages over the apo structures in ligand binding mode predictions by both rigid docking and flexible docking and in virtual screening on the database of active and decoy ligands from the DUD-E. These results indicate that our method is effective in recovering holo-like conformations and will be valuable in structure-based drug discovery.


Assuntos
Proteínas , Ligantes , Conformação Proteica , Sítios de Ligação , Proteínas/química , Bases de Dados de Proteínas , Ligação Proteica
11.
J Chem Inf Model ; 62(3): 740-750, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35068149

RESUMO

Protein-protein interactions are crucial in many biological processes. Therefore, determining the structure of a protein-protein complex is valuable for understanding its molecular mechanisms and developing drugs. Molecular docking is a powerful computational tool in the prediction of protein-protein complex structures, in which a scoring function with good performance is very important. In this study, we have proposed a hybrid scoring function of atomic contact-based desolvation energies and distance-dependent interatomic potentials for protein-protein interactions, named HITScorePP, where the atomic contact desolvation energies were derived using an iterative method and the distance-dependent potentials were directly taken from our ITScorePP scoring function. Integrating the hybrid scoring function into our fast Fourier transform (FFT) based HDOCK docking scheme, the updated docking program, named HDOCK2.0, significantly improved the docking performance on the 55 newly added complexes in the protein docking benchmark 5.0 and a data set of 19 antibacterial protein complexes. HDOCK2.0 was also compared with four other state-of-the-art docking programs including Rosetta, ZDOCK3.0.2, FRODOCK3.0, ATTRACT, and PatchDock and obtained the overall best performance in binding mode predictions. These results demonstrated the accuracy of our hybrid scoring function and the necessity of included desolvation effects in protein-protein docking.


Assuntos
Algoritmos , Proteínas , Simulação de Acoplamento Molecular , Fenômenos Físicos , Ligação Proteica , Proteínas/química
12.
Bioinformatics ; 36(2): 478-486, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31384919

RESUMO

MOTIVATION: Protein structure alignment is one of the fundamental problems in computational structure biology. A variety of algorithms have been developed to address this important issue in the past decade. However, due to their heuristic nature, current structure alignment methods may suffer from suboptimal alignment and/or over-fragmentation and thus lead to a biologically wrong alignment in some cases. To overcome these limitations, we have developed an accurate topology-independent and global structure alignment method through an FFT-based exhaustive search algorithm, which is referred to as FTAlign. RESULTS: Our FTAlign algorithm was extensively tested on six commonly used datasets and compared with seven state-of-the-art structure alignment approaches, TMalign, DeepAlign, Kpax, 3DCOMB, MICAN, SPalignNS and CLICK. It was shown that FTAlign outperformed the other methods in reproducing manually curated alignments and obtained a high success rate of 96.7 and 90.0% on two gold-standard benchmarks, MALIDUP and MALISAM, respectively. Moreover, FTAlign also achieved the overall best performance in terms of biologically meaningful structure overlap (SO) and TMscore on both the sequential alignment test sets including MALIDUP, MALISAM and 64 difficult cases from HOMSTRAD, and the non-sequential sets including MALIDUP-NS, MALISAM-NS, 199 topology-different cases, where FTAlign especially showed more advantage for non-sequential alignment. Despite its global search feature, FTAlign is also computationally efficient and can normally complete a pairwise alignment within one second. AVAILABILITY AND IMPLEMENTATION: http://huanglab.phys.hust.edu.cn/ftalign/.


Assuntos
Proteínas , Software , Algoritmos , Biologia Computacional , Heurística
13.
J Chem Inf Model ; 61(9): 4771-4782, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468128

RESUMO

Nucleic acid-ligand interactions play an important role in numerous cellular processes such as gene function expression and regulation. Therefore, nucleic acids such as RNAs have become more and more important drug targets, where the structural determination of nucleic acid-ligand complexes is pivotal for understanding their functions and thus developing therapeutic interventions. Molecular docking has been a useful computational tool in predicting the complex structure between molecules. However, although a number of docking algorithms have been developed for protein-ligand interactions, only a few docking programs were presented for nucleic acid-ligand interactions. Here, we have developed a fast nucleic acid-ligand docking algorithm, named NLDock, by implementing our intrinsic scoring function ITScoreNL for nucleic acid-ligand interactions into a modified version of the MDock program. NLDock was extensively evaluated on four test sets and compared with five other state-of-the-art docking algorithms including AutoDock, DOCK 6, rDock, GOLD, and Glide. It was shown that our NLDock algorithm obtained a significantly better performance than the other docking programs in binding mode predictions and achieved the success rates of 73%, 36%, and 32% on the largest test set of 77 complexes for local rigid-, local flexible-, and global flexible-ligand docking, respectively. In addition, our NLDock approach is also computationally efficient and consumed an average of as short as 0.97 and 2.08 min for a local flexible-ligand docking job and a global flexible-ligand docking job, respectively. These results suggest the good performance of our NLDock in both docking accuracy and computational efficiency.


Assuntos
Ácidos Nucleicos , Algoritmos , DNA , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/metabolismo , RNA
14.
Nucleic Acids Res ; 47(W1): W35-W42, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114906

RESUMO

Interactions between nuclide acids (RNA/DNA) play important roles in many basic cellular activities like transcription regulation, RNA processing, and protein synthesis. Therefore, determining the complex structures between RNAs/DNAs is crucial to understand the molecular mechanism of related RNA/DNA-RNA/DNA interactions. Here, we have presented HNADOCK, a user-friendly web server for nucleic acid (NA)-nucleic acid docking to model the 3D complex structures between two RNAs/DNAs, where both sequence and structure inputs are accepted for RNAs, while only structure inputs are supported for DNAs. HNADOCK server was tested through both unbound structure and sequence inputs on the benchmark of 60 RNA-RNA complexes and compared with the state-of-the-art algorithm SimRNA. For structure input, HNADOCK server achieved a high success rate of 71.7% for top 10 predictions, compared to 58.3% for SimRNA. For sequence input, HNADOCK server also obtained a satisfactory performance and gave a success rate of 83.3% when the bound RNA templates are included or 53.3% when excluding those bound RNA templates. It was also found that inclusion of the inter-RNA base-pairing information from RNA-RNA interaction prediction can significantly improve the docking accuracy, especially for the top prediction. HNADOCK is fast and can normally finish a job in about 10 minutes. The HNADOCK web server is available at http://huanglab.phys.hust.edu.cn/hnadock/.


Assuntos
DNA/genética , Conformação de Ácido Nucleico , RNA/genética , Software , Algoritmos , Biologia Computacional/métodos , DNA/química , Internet , Simulação de Acoplamento Molecular/métodos , RNA/química
15.
Proteins ; 88(8): 1055-1069, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31994779

RESUMO

Protein-protein docking plays an important role in the computational prediction of the complex structure between two proteins. For years, a variety of docking algorithms have been developed, as witnessed by the critical assessment of prediction interactions (CAPRI) experiments. However, despite their successes, many docking algorithms often require a series of manual operations like modeling structures from sequences, incorporating biological information, and selecting final models. The difficulties in these manual steps have significantly limited the applications of protein-protein docking, as most of the users in the community are nonexperts in docking. Therefore, automated docking like a web server, which can give a comparable performance to human docking protocol, is pressingly needed. As such, we have participated in the blind CAPRI experiments for Rounds 38-45 and CASP13-CAPRI challenge for Round 46 with both our HDOCK automated docking web server and human docking protocol. It was shown that our HDOCK server achieved an "acceptable" or higher CAPRI-rated model in the top 10 submitted predictions for 65.5% and 59.1% of the targets in the docking experiments of CAPRI and CASP13-CAPRI, respectively, which are comparable to 66.7% and 54.5% for human docking protocol. Similar trends can also be observed in the scoring experiments. These results validated our HDOCK server as an efficient automated docking protocol for nonexpert users. Challenges and opportunities of automated docking are also discussed.


Assuntos
Simulação de Acoplamento Molecular , Oligossacarídeos/química , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Oligossacarídeos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
16.
Brief Bioinform ; 19(5): 982-994, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28334282

RESUMO

Protein-ligand docking has been playing an important role in modern drug discovery. To model drug-target binding in real systems, a number of flexible-ligand docking algorithms with different sampling strategies and scoring methods have been subsequently developed over the past three decades, while rigid-ligand docking is still being used because of its compelling computational efficiency. Here, a comprehensive assessment has been conducted to investigate the effectiveness of flexible-ligand docking versus rigid-ligand docking for three representative docking algorithms (global optimization, incremental construction and multi-conformer docking) in virtual screening and pose prediction on the Directory of Useful Decoys. It was found that overall flexible-ligand docking did not achieve a statistically significant improvement in enrichments over rigid-ligand docking in virtual screening, but all docking programs significantly improved the success rates when considering ligand flexibility in pose prediction. The worse effectiveness of flexible-ligand docking in virtual screening than in pose prediction suggests that the challenges of current docking algorithms exist in ranking more than docking, although the use of flexible-ligand docking in virtual screening was justified by its better effectiveness for more flexible ligand in virtual screening. Challenges for scoring, including internal energy, charge polarization, entropy and flexibility, were investigated and discussed. An empirical way was also proposed to consider loss of ligand conformational entropy for virtual screening.


Assuntos
Algoritmos , Simulação de Acoplamento Molecular/estatística & dados numéricos , Sítios de Ligação , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Descoberta de Drogas/estatística & dados numéricos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Entropia , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Software , Interface Usuário-Computador
17.
Bioinformatics ; 35(23): 4994-5002, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086984

RESUMO

MOTIVATION: Given the importance of protein-ribonucleic acid (RNA) interactions in many biological processes, a variety of docking algorithms have been developed to predict the complex structure from individual protein and RNA partners in the past decade. However, due to the impact of molecular flexibility, the performance of current methods has hit a bottleneck in realistic unbound docking. Pushing the limit, we have proposed a protein-ensemble-RNA docking strategy to explicitly consider the protein flexibility in protein-RNA docking through an ensemble of multiple protein structures, which is referred to as MPRDock. Instead of taking conformations from MD simulations or experimental structures, we obtained the multiple structures of a protein by building models from its homologous templates in the Protein Data Bank (PDB). RESULTS: Our approach can not only avoid the reliability issue of structures from MD simulations but also circumvent the limited number of experimental structures for a target protein in the PDB. Tested on 68 unbound-bound and 18 unbound-unbound protein-RNA complexes, our MPRDock/DITScorePR considerably improved the docking performance and achieved a significantly higher success rate than single-protein rigid docking whether pseudo-unbound templates are included or not. Similar improvements were also observed when combining our ensemble docking strategy with other scoring functions. The present homology model-based ensemble docking approach will have a general application in molecular docking for other interactions. AVAILABILITY AND IMPLEMENTATION: http://huanglab.phys.hust.edu.cn/mprdock/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Algoritmos , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas , RNA , Reprodutibilidade dos Testes
18.
Bioinformatics ; 35(1): 175-177, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982280

RESUMO

Summary: A structural database of peptide-protein interactions is important for drug discovery targeting peptide-mediated interactions. Although some peptide databases, especially for special types of peptides, have been developed, a comprehensive database of cleaned peptide-protein complex structures is still not available. Such cleaned structures are valuable for docking and scoring studies in structure-based drug design. Here, we have developed PepBDB-a curated Peptide Binding DataBase of biological complex structures from the Protein Data Bank (PDB). PepBDB presents not only cleaned structures but also extensive information about biological peptide-protein interactions, and allows users to search the database with a variety of options and interactively visualize the search results. Availability and implementation: PepBDB is available at http://huanglab.phys.hust.edu.cn/pepbdb/.


Assuntos
Biologia Computacional , Bases de Dados de Proteínas , Peptídeos , Mapeamento de Interação de Proteínas
19.
J Chem Inf Model ; 60(12): 6698-6708, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33291885

RESUMO

Nucleic acid-ligand complexes underlie numerous cellular processes, such as gene function expression and regulation, in which their three-dimensional structures are important to understand their functions and thus to develop therapeutic interventions. Given the high cost and technical difficulties in experimental methods, computational methods such as molecular docking have been actively used to investigate nucleic acid-ligand interactions in which an accurate scoring function is crucial. However, because of the limited number of experimental nucleic acid-ligand binding data and structures, the scoring function development for nucleic acid-ligand interactions falls far behind that for protein-protein and protein-ligand interactions. Here, based on our statistical mechanics-based iterative approach, we have developed an iterative knowledge-based scoring function for nucleic acid-ligand interactions, named as ITScore-NL, by explicitly including stacking and electrostatic potentials. Our ITScore-NL scoring function was extensively evaluated for its ability in the binding mode and binding affinity predictions on three diverse test sets and compared with state-of-the-art scoring functions. Overall, ITScore-NL obtained significantly better performance than the other 12 scoring functions and predicted near-native poses with rmsd ≤ 1.5 Å for 71.43% of the cases when the top three binding modes were considered and a good correlation of R = 0.64 in binding affinity prediction on the large test set of 77 nucleic acid-ligand complexes. These results suggested the accuracy of ITScore-NL and the necessity of explicitly including stacking and electrostatic potentials.


Assuntos
Ácidos Nucleicos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/metabolismo
20.
J Chem Inf Model ; 60(4): 2377-2387, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32267149

RESUMO

Protein-peptide docking, which predicts the complex structure between a protein and a peptide, is a valuable computational tool in peptide therapeutics development and the mechanistic investigation of peptides involved in cellular processes. Although current peptide docking approaches are often able to sample near-native peptide binding modes, correctly identifying those near-native modes from decoys is still challenging because of the extremely high complexity of the peptide binding energy landscape. In this study, we have developed an efficient postdocking rescoring protocol using a combined scoring function of knowledge-based ITScorePP potentials and physics-based MM-GBSA energies. Tested on five benchmark/docking test sets, our postdocking strategy showed an overall significantly better performance in binding mode prediction and score-rmsd correlation than original docking approaches. Specifically, our postdocking protocol outperformed original docking approaches with success rates of 15.8 versus 10.5% for pepATTRACT on the Global_57 benchmark, 5.3 versus 5.3% for CABS-dock on the Global_57 benchmark, 17.0 versus 11.3% for FlexPepDock on the LEADS-PEP data set, 40.3 versus 33.9% for HPEPDOCK on the Local_62 benchmark, and 64.2 versus 52.8% for HPEPDOCK on the LEADS-PEP data set when the top prediction was considered. These results demonstrated the efficacy and robustness of our postdocking protocol.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos , Ligação Proteica , Proteínas , Análise por Conglomerados , Peptídeos/metabolismo , Conformação Proteica , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa