Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 107(6): 1785-1793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36415892

RESUMO

Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, is one of the most devastating oomycete diseases of soybean in Illinois. Single resistant genes (Rps) are used to manage this pathogen but P. sojae has adapted to Rps, causing failure of resistance in many regions. In addition to P. sojae, recent reports indicate that P. sansomeana could also cause root rot in soybean. Soil samples and symptomatic plants were collected across 40 Illinois counties between 2016 and 2018. P. sojae (77%) was more abundant than P. sansomeana (23%) across Illinois fields. Both species were characterized by virulence, aggressiveness, and fungicide sensitivity. Virulence of all P. sojae isolates was evaluated using the hypocotyl inoculation technique in 13 soybean differentials. Aggressiveness was evaluated in the greenhouse by inoculating a susceptible cultivar and measuring root and shoot dry weight. On average, P. sojae isolates were able to cause disease on six soybean differentials. P. sojae was more aggressive than P. sansomeana. All isolates were sensitive to azoxystrobin, ethaboxam, mefenoxam, and metalaxyl. The characterization of the population of species associated with PRR will inform management decisions for this disease in Illinois.


Assuntos
Fungicidas Industriais , Phytophthora , Resistência à Doença/genética , Glycine max/genética , Fungicidas Industriais/farmacologia , Phytophthora/genética , Virulência , Illinois
2.
Fungal Genet Biol ; 159: 103655, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954385

RESUMO

Northern corn leaf blight (NCLB) and sorghum leaf blight (SLB) are significant diseases of maize and sorghum, respectively, caused by the filamentous fungus Setosphaeria turcica. Strains of S. turcica are typically host-specific and infect either maize or sorghum. Host specificity in this pathogen is attributed to a single locus for maize and a second distinct locus for sorghum. To identify the genetic basis of host specificity in S. turcica, we generated a biparental population of S. turcica by crossing strains specific to maize and sorghum, phenotyped the population for leaf blight on sorghum and maize, genotyped the population to create a linkage map of S. turcica, and located candidate virulence regions. A total of 190 ascospores from 35 pseudothecia were isolated from the cross of maize and sorghum-specific strains. Greenhouse phenotyping of the biparental population (n = 144) showed independent inheritance of virulence, as indicated by a 1:1:1:1 segregation for virulence to maize, sorghum, both maize and sorghum, and avirulence to both crops. The population and host-specific parent strains were genotyped using genome skim sequencing on an Illumina NovaSeq 6000 platform resulting in over 780 million reads. A total of 32,635 variants including single nucleotide polymorphisms and indels were scored. There was evidence for a large deletion in the sorghum-specific strain of S. turcica. A genetic map consisting of 17 linkage groups spanning 3,069 centimorgans was constructed. Virulence to sorghum and maize mapped on distinct linkage groups with a significant QTL detected for virulence to maize. Furthermore, a single locus each for the in vitro traits hyphal growth rate and conidiation were identified and mapped onto two other linkage groups. In vitro traits did not correlate with in planta virulence complexity, suggesting that virulence on both hosts does not incur a fitness cost. Hyphal growth rate and conidiation were negatively correlated, indicating differences in hyphal growth versus dispersal ability for this pathogen. Identification of genetic regions underlying virulence specificity and saprotrophic growth traits in S. turcica provides a better understanding of the S. turcica- Andropogoneae pathosystem.


Assuntos
Doenças das Plantas , Zea mays , Ascomicetos , Mapeamento Cromossômico , Genômica , Doenças das Plantas/microbiologia , Virulência/genética , Zea mays/microbiologia
3.
PLoS One ; 10(10): e0139445, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485142

RESUMO

Since the 1990s, brown root rot caused by Phellinus noxius (Corner) Cunningham has become a major tree disease in Taiwan. This fungal pathogen can infect more than 200 hardwood and softwood tree species, causing gradual to fast decline of the trees. For effective control, we must determine how the pathogen is disseminated and how the new infection center of brown root rot is established. We performed Illumina sequencing and de novo assembly of a single basidiospore isolate Daxi42 and obtained a draft genome of ~40 Mb. By comparing the 12,217 simple sequence repeat (SSR) regions in Daxi42 with the low-coverage Illumina sequencing data for four additional P. noxius isolates, we identified 154 SSR regions with potential polymorphisms. A set of 13 polymorphic SSR markers were then developed and used to analyze 329 P. noxius isolates collected from 73 tree species from urban/agricultural areas in 14 cities/counties all around Taiwan from 1989 to 2012. The results revealed a high proportion (~98%) of distinct multilocus genotypes (MLGs) and that none of the 329 isolates were genome-wide homozygous, which supports a possible predominant outcrossing reproductive mode in P. noxius. The diverse MLGs exist as discrete patches, so brown root rot was most likely caused by multiple clones rather than a single predominant strain. The isolates collected from diseased trees near each other tend to have similar genotype(s), which indicates that P. noxius may spread to adjacent trees via root-to-root contact. Analyses based on Bayesian clustering, FST statistics, analysis of molecular variance, and isolation by distance all suggest a low degree of population differentiation and little to no barrier to gene flow throughout the P. noxius population in Taiwan. We discuss the involvement of basidiospore dispersal in disease dissemination.


Assuntos
Genes Fúngicos , Repetições de Microssatélites , Micoses/genética , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Genótipo , Doenças das Plantas/genética , Polimorfismo Genético , Taiwan
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa