Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(3): 427-441.e21, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111074

RESUMO

Human apolipoprotein E (ApoE) apolipoprotein is primarily expressed in three isoforms (ApoE2, ApoE3, and ApoE4) that differ only by two residues. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), ApoE3 is neutral, and ApoE2 is protective. How ApoE isoforms influence AD pathogenesis, however, remains unclear. Using ES-cell-derived human neurons, we show that ApoE secreted by glia stimulates neuronal Aß production with an ApoE4 > ApoE3 > ApoE2 potency rank order. We demonstrate that ApoE binding to ApoE receptors activates dual leucine-zipper kinase (DLK), a MAP-kinase kinase kinase that then activates MKK7 and ERK1/2 MAP kinases. Activated ERK1/2 induces cFos phosphorylation, stimulating the transcription factor AP-1, which in turn enhances transcription of amyloid-ß precursor protein (APP) and thereby increases amyloid-ß levels. This molecular mechanism also regulates APP transcription in mice in vivo. Our data describe a novel signal transduction pathway in neurons whereby ApoE activates a non-canonical MAP kinase cascade that enhances APP transcription and amyloid-ß synthesis.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/metabolismo , Sistema de Sinalização das MAP Quinases , Doença de Alzheimer/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
2.
Cell ; 148(5): 933-46, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385959

RESUMO

Control of translation is a fundamental source of regulation in gene expression. The induction of protein synthesis by brain-derived neurotrophic factor (BDNF) critically contributes to enduring modifications of synaptic function, but how BDNF selectively affects only a minority of expressed mRNAs is poorly understood. We report that BDNF rapidly elevates Dicer, increasing mature miRNA levels and inducing RNA processing bodies in neurons. BDNF also rapidly induces Lin28, causing selective loss of Lin28-regulated miRNAs and a corresponding upregulation in translation of their target mRNAs. Binding sites for Lin28-regulated miRNAs are necessary and sufficient to confer BDNF responsiveness to a transcript. Lin28 deficiency, or expression of a Lin28-resistant Let-7 precursor miRNA, inhibits BDNF translation specificity and BDNF-dependent dendrite arborization. Our data establish that specificity in BDNF-regulated translation depends upon a two-part posttranscriptional control of miRNA biogenesis that generally enhances mRNA repression in association with GW182 while selectively derepressing and increasing translation of specific mRNAs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Biossíntese de Proteínas , Animais , Autoantígenos , RNA Helicases DEAD-box/metabolismo , Hipocampo/citologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Ribonuclease III/metabolismo
3.
J Biol Chem ; 300(8): 107494, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925326

RESUMO

The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect human pluripotent stem cell-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide chromatin immunoprecipitation enrichment and mechanistic studies show that p38 MAPK-mediated CCAAT enhancer binding protein delta (CEBPD) upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in mesenchymal stem cells exerts a negative regulatory effect on osteogenesis through a similar mechanism. Chromatin immunoprecipitation-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.

4.
Mol Ther ; 31(9): 2715-2733, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37481702

RESUMO

Neuromyelitis optica (NMO) is an autoimmune inflammatory disease of the central nervous system (CNS) characterized by transverse myelitis and optic neuritis. The pathogenic serum IgG antibody against the aquaporin-4 (AQP4) on astrocytes triggers the activation of the complement cascade, causing astrocyte injury, followed by oligodendrocyte injury, demyelination, and neuronal loss. Complement C3 is positioned as a central player that relays upstream initiation signals to activate downstream effectors, potentially stimulating and amplifying host immune and inflammatory responses. However, whether targeting the inhibition of C3 signaling could ameliorate tissue injury, locomotor defects, and visual impairments in NMO remains to be investigated. In this study, using the targeted C3 inhibitor CR2-Crry led to a significant decrease in complement deposition and demyelination in both slice cultures and focal intracerebral injection models. Moreover, the treatment downregulated the expression of inflammatory cytokines and improved motor dysfunction in a systemic NMO mouse model. Similarly, employing serotype 2/9 adeno-associated virus (AAV2/9) to induce permanent expression of CR2-Crry resulted in a reduction in visual dysfunction by attenuating NMO-like lesions. Our findings reveal the therapeutic value of inhibiting the complement C3 signaling pathway in NMO.


Assuntos
Complemento C3 , Neuromielite Óptica , Animais , Camundongos , Complemento C3/genética , Complemento C3/metabolismo , Neuromielite Óptica/patologia , Aquaporina 4/metabolismo , Transtornos da Visão/complicações , Transtornos da Visão/patologia , Astrócitos/metabolismo , Transdução de Sinais , Proteínas Recombinantes de Fusão/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035170

RESUMO

Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous NRXN1 deletions, we observed the same synaptic impairment as in engineered NRXN1-deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. Nrxn1-deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1-binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Mutação , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/metabolismo , Neurotransmissores/metabolismo , Esquizofrenia/metabolismo , Estudos de Casos e Controles , Transdiferenciação Celular , Células Cultivadas , Estudos de Coortes , Células-Tronco Embrionárias/citologia , Expressão Gênica , Guanilato Quinases/metabolismo , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
6.
Nano Lett ; 23(21): 9811-9816, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37708490

RESUMO

Extreme ultraviolet (EUV) radiation with wavelengths of 10-121 nm has drawn considerable attention recently for its use in photolithography to fabricate nanoelectronic chips. This study demonstrates, for the first time, fluorescent nanodiamonds (FNDs) with nitrogen-vacancy (NV) centers as scintillators to image and characterize EUV radiations. The FNDs employed are ∼100 nm in size; they form a uniform and stable thin film on an indium-tin-oxide-coated slide by electrospray deposition. The film is nonhygroscopic and photostable and can emit bright red fluorescence from NV0 centers when excited by EUV light. An FND-based imaging device has been developed and applied for beam diagnostics of 50 nm and 13.5 nm synchrotron radiations, achieving a spatial resolution of 30 µm using a film of ∼1 µm thickness. The noise equivalent power density is 29 µW/(cm2 Hz1/2) for the 13.5 nm radiation. The method is generally applicable to imaging EUV radiation from different sources.

7.
J Org Chem ; 88(24): 17227-17236, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38019169

RESUMO

This study presents a convenient approach to the synthesis of indole- and benzofuran-based benzylic sulfones using unactivated alkynes containing aryl iodides and sodium sulfinates under visible light irradiation. The procedure involves a sequential series of dehalogenation, carbo-cyclization, and radical sulfonylation. Plausible insights into the reaction mechanism are derived from control experiments, leading to the proposal of a radical cascade reaction pathway.

8.
Alzheimers Dement ; 19(1): 9-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234337

RESUMO

Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.


Assuntos
Doença de Alzheimer , Quitinases , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Doenças Neuroinflamatórias , Inflamação
9.
Clin Otolaryngol ; 48(2): 313-320, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36106575

RESUMO

OBJECTIVES: Fungal rhinosinusitis is an inflammatory disease of the nose that may lead to life-threatening complications. This study compared the bacterial and fungal microbiomes between patients with invasive fungal rhinosinusitis (IFRS) and non-IFRS (NIFRS). DESIGN: This was a prospective study including 18 IFRS and NIFRS patients. Fungal and bacterial microbiomes from surgical specimens were sequenced from amplicons of the internal transcribed spacer 1 (ITS1) region and the V3-V4 region of the 16S locus, respectively. Microbiomes were generated using the Illumina MiSeq System 2 x 301 base pair chemistry with a paired-end protocol. SETTING: Tertiary medical centre. RESULTS: Targeted metagenomics identified Aspergillus spp. as the predominant fungus in both IFRS and NIFRS patients. Based on phylum and genera level diversity, and abundance differences, significant differences of operational taxonomic units (OTUs) (Fusobacterium, Prevotella, Pseudomonas, Neisseria and Streptococcus) were more abundant in NIFRS compared with IFRS patients. CONCLUSIONS: This is the first study to analyse bacterial and fungal microbiomes in patients with IFRS and NIFRS via ITS1 and 16S genomics sequencing. Bacterial microbiomes from patients with IFRS demonstrated dysbiosis (alterations in diversity and abundance) compared to those from patients with NIFRS.


Assuntos
Microbiota , Humanos , Estudos Prospectivos , Microbiota/genética , Bactérias/genética , Streptococcus , Sequenciamento de Nucleotídeos em Larga Escala/métodos
10.
J Food Sci Technol ; 60(3): 1015-1025, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908355

RESUMO

Resveratrol butyrate esters (RBEs), which are novel resveratrol-synthesized derivatives, exhibit increased biological activity. This study elucidated the effect of RBEs on fat metabolism and their anti-obesity characteristics. Their molecular mechanism was investigated in the 3T3-L1 murine preadipocyte cells and adipocytes. RBE doses of < 2 µM did not induce a significant change in the viability of 3T3-L1 adipocytes. After RBEs treatment, intracellular lipid droplet accumulation in 3T3-L1 adipocytes was stimulated by methylisobutylxanthine, dexamethasone, and insulin-containing medium. However, a significant dose-dependent reduction in intracellular lipid levels was observed. The mRNA levels of two adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR] and CCAAT/enhancer-binding proteins [C/EBP]) and lipogenic proteins (fatty acid-binding protein 4 [FABP4] and fatty acid synthase [FAS]) were significantly attenuated by RBE treatment in both MDI-stimulated and differentiated 3T3-L1 adipocytes. Moreover, the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) also dramatically increased in the MDI + RBE-treated group compared to that in the MDI + vehicle-treated group. Collectively, our study provides strong evidence that RBEs inhibit adipogenesis by regulating adipogenic protein expression and increasing the p-AMPK/AMPK ratio. Future studies will be conducted on animal models to validate the application of RBEs as a functional food ingredient in improving human health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05436-x.

11.
J Food Sci Technol ; 60(6): 1723-1730, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37187983

RESUMO

Sargassum are brown algae belonging to the class Phaeophyceae. Brown algae are rich in nutrients and widely used in food. Most previous experiments have focused on the functional evaluation of organic solvent extracts of Sargassum. Considering food safety, this study investigated the antioxidant and antiobesity activities of Sargassum hemiphyllum water extract (SE). The antioxidant activity of SE (500-4000 mg/mL) was determined in vitro. The results indicated that SE has good DPPH radical scavenging activity (14-74%), reducing power (20-78%), ABTS+ radical scavenging activity (8-91%), and Fe2+ chelating ability (5-25%). Furthermore, the antiobesity activity of SE (50-300 mg/mL) was analysed in a 3T3-L1 adipocyte model. SE effectively inhibited lipid accumulation (determined by methods including measuring the absorbance of Oil red O after staining and the triglyceride content, which were decreased by 10% and 20%, respectively) by reducing peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in 3T3-L1 adipocytes. This study suggested that SE has good antioxidant and antiobesity properties. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05707-1.

12.
J Food Sci Technol ; 60(3): 1036-1044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908372

RESUMO

Citrus limon (lemon) possesses immunoregulatory, antioxidant, and lipid-lowering effects. Our previous study showed that lemon fermented products (LFP) which were lemon fermented with Lactobacillus OPC1 had the ability to avert obesity. However, the LFP effects on the pathway of lipid metabolism by gut microbiota were still unclear. This study was aimed to investigate the LFP effects on liver lipid metabolism and gut microbiota in a rat model of obesity caused by a high-calorie diet. LFP effectively reduced the total triglyceride (49.7%) and total cholesterol (53.3%) contents of the liver. Additionally, the mRNA levels of genes related to triglyceride metabolism (SREBP-1c, PPARγ, and ACC), cholesterol metabolism (HMG-CoA reductase, ACAT, and LCAT), and lipid ß-oxidation (PPARα, and CPT-1) were regulated by LFP. Furthermore, LFP reduced the ratio of Firmicutes/Bacteroidetes and enhanced the ratio of Firmicutes Clostridia. Overall, these findings suggested that LFP might use as a potential dietary supplement for preventing obesity by modulating the lipid metabolism and improving the gut microbiota.

13.
Mol Microbiol ; 115(4): 774-788, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33190361

RESUMO

Gorkovskiy et al. observed that many [PSI+ ] prion isolates, obtained in yeast with the mutant Hsp104T160M chaperone, propagate poorly in wild-type cells and suggested that Hsp104 is part of the cellular anti-prion system, curing many nascent [PSI+ ] variants. Here, we argue that the concept may require reassessment. We induced [PSI+ ] variants in both the wild-type and the mutant background. Three new variants were isolated in the T160M background. They exhibited lower thermostability, possessed novel structural features, and were inherently mutable, changing to well-characterized VH, VK, and VL variants in wild-type cells. In contrast, VH, VK, and VL of the wild-type background, could not change freely and were lost in the mutant, due to insufficient chaperone activity. Thus, mutant Hsp104 can impose as much restriction against emerging prion variants as the wild-type protein. Such restriction conserved the transmutable variants in the T160M background, since new structures mis-templated from them could not gain a foothold. We further demonstrate excess Hsp104T160M or Hsp104∆2-147 can eliminate nearly all of the [PSI+ ] variants in their native background. This finding contradicts the generally held belief that Hsp104-induced [PSI+ ] curing requires its N-terminal domain, and may help settling the current contention regarding how excess Hsp104 cures [PSI+ ].


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Príons/genética , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Dobramento de Proteína , Deleção de Sequência
14.
Acta Pharmacol Sin ; 43(1): 15-25, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33824460

RESUMO

White matter injury is the major pathological alteration of subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion. It is characterized by progressive demyelination, apoptosis of oligodendrocytes and microglial activation, which leads to impairment of cognitive function. Triptolide exhibits a variety of pharmacological activities including anti-inflammation, immunosuppression and antitumor, etc. In this study, we investigated the effects of triptolide on white matter injury and cognitive impairments in mice with chronic cerebral hypoperfusion induced by the right unilateral common carotid artery occlusion (rUCCAO). We showed that triptolide administration alleviated the demyelination, axonal injury, and oligodendrocyte loss in the mice. Triptolide also improved cognitive function in novel object recognition test and Morris water maze test. In primary oligodendrocytes following oxygen-glucose deprivation (OGD), application of triptolide (0.001-0.1 nM) exerted concentration-dependent protection. We revealed that the protective effect of triptolide resulted from its inhibition of oligodendrocyte apoptosis via increasing the phosphorylation of the Src/Akt/GSK3ß pathway. Moreover, triptolide suppressed microglial activation and proinflammatory cytokines expression after chronic cerebral hypoperfusion in mice and in BV2 microglial cells following OGD, which also contributing to its alleviation of white matter injury. Importantly, mice received triptolide at the dose of 20 µg·kg-1·d-1 did not show hepatotoxicity and nephrotoxicity even after chronic treatment. Thus, our results highlight that triptolide alleviates whiter matter injury induced by chronic cerebral hypoperfusion through direct protection against oligodendrocyte apoptosis and indirect protection by inhibition of microglial inflammation. Triptolide may have novel indication in clinic such as the treatment of chronic cerebral hypoperfusion-induced SIVD.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenantrenos/farmacologia , Substância Branca/efeitos dos fármacos , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fármacos Neuroprotetores/administração & dosagem , Fenantrenos/administração & dosagem , Relação Estrutura-Atividade , Substância Branca/metabolismo , Substância Branca/patologia
15.
An Acad Bras Cienc ; 94(2): e20191255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544844

RESUMO

Studies on herbal medicine have exposed some toxic effects on humans. Peperomia pellucida (L.) HBK (P. pellucida) is one of the herbal medicines recommended as an alternative to synthetic medicine for diseases. Studies exist on the pharmacological activities of P. pellucida extracts, but studies on the potential hepatotoxic and mutagenic effects of subchronic administration of P. pellucida aqueous extracts, which is very important knowledge when we venture into alternative medicine, are lacking. In this study, two concentrations (60 mg/kg and 30 mg/kg) of P. pellucida aqueous extracts - decoction and freeze-dried extracts -were administered in vivo to BALB/c mice for nine (9) weeks. Significant differences were observed between the 60 mg/kg freeze-dried extract and the control in terms of mice weight and micronucleus frequency at 7-8 weeks of treatment. Also, no significant differences were found between groups in serum transaminases levels. Generally, there is no sufficient evidence to show that subchronic exposure to P. pellucida aqueous extracts is hepatotoxic though 60 mg/kg concentration may be mutagenic. This study suggests that although the herbal medicine is safe for prolonged consumption, users are advised to take precautions and moderations of its use due to the possibility of potential mutagenic effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peperomia , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Camundongos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Fitoterapia , Extratos Vegetais/farmacologia , Água
16.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293461

RESUMO

Acinetobacter baumannii is a well-known nosocomial pathogen that can survive in different environments through the use of intricate networks to regulate gene expression. Two-component systems (TCS) form an important part of such regulatory networks, and in this study, we describe the identification and characterization of a novel EmaSR TCS in A. baumannii. We constructed a Tn5-tagged mutagenesis library, from which an emaS sensor kinase gene and emaR response regulator gene were identified. We found that emaS/emaR single-mutants and double-mutants were unable to replicate in M9 medium with 1% ethanol as the single carbon source. Motility and biofilm formation were negatively affected in double-mutants, and transcriptomic analysis showed that mutation of emaSR dysregulated genes required for carbon metabolism. In addition, emaS/emaR single-mutants and double-mutants were unable to survive in acetic acid- and sodium acetate-containing medium, indicating that the EmaSR TCS is also important for acetate metabolism. Furthermore, virulence against Galleria mellonella was diminished in emaS/emaR single- and double-mutants. Taken together, these results show that this novel EmaSR TCS is involved in the regulation of A. baumannii ethanol metabolism and acetate metabolism, with important implications on motility, biofilm formation, and virulence if mutated. Further research on the underlying mechanisms is warranted.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/metabolismo , Acetato de Sódio , Virulência/genética , Etanol/metabolismo , Carbono/metabolismo , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Mol Divers ; 25(2): 967-979, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32297120

RESUMO

In an attempt to search for new natural product-based antitumor agents, a series of novel (aryl)methyl-amine derivatives of dehydroabietic acid-based B ring-fused-thiazole were designed and synthesized. The primary bioassay showed that compounds 5r and 5s presented certain inhibitory activity against cancer cells, weak cytotoxic activity against normal cells, and inhibitory activity against PI3K/AKT/mTOR signaling pathway. The binding modes and the binding site interactions between the active compounds and the target proteins were predicted preliminarily by the molecular docking method.


Assuntos
Abietanos , Antineoplásicos , Metilaminas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases , Tiazóis , Abietanos/química , Abietanos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Metilaminas/química , Metilaminas/farmacologia , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiazóis/química , Tiazóis/farmacologia
18.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830080

RESUMO

The transcription factor Ets1 is essential for the development/differentiation of invariant Natural Killer T (iNKT) cells at multiple stages. However, its mechanisms of action and target genes in iNKT cells are still elusive. Here, we show that Ets1 is required for the optimal expression of the Vα14Jα18 T cell receptor (TCR) in post-selected thymic iNKT cells and their immediate differentiation. Ets1 is also critical for maintaining the peripheral homeostasis of iNKT cells, which is a role independent of the expression of the Vα14Jα18 TCR. Genome-wide transcriptomic analyses of post-selected iNKT cells further reveal that Ets1 controls leukocytes activation, proliferation differentiation, and leukocyte-mediated immunity. In addition, Ets1 regulates the expression of ICOS and PLZF in iNKT cells. More importantly, restoring the expression of PLZF and the Vα14Jα18 TCR partially rescues the differentiation of iNKT cells in the absence of Ets1. Taken together, our results establish a detailed molecular picture of how Ets1 regulates the stepwise differentiation of iNKT cells.


Assuntos
Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Células T Matadoras Naturais/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/imunologia , Proteína Proto-Oncogênica c-ets-1/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Diferenciação Celular/genética , Camundongos , Camundongos Knockout , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína Proto-Oncogênica c-ets-1/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
19.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445345

RESUMO

Chondrosarcoma is a malignant bone tumor that is characterized by high metastatic potential and marked resistance to radiation and chemotherapy. The knowledge that adipokines facilitate the initiation, progression, metastasis, and treatment resistance of various tumors has driven several in vitro and in vivo investigations into the effects of adipokines resistin, leptin, and adiponectin upon the development and progression of chondrosarcomas. Another adipokine, visfatin, is known to regulate tumor progression and metastasis, although how this molecule may affect chondrosarcoma metastasis is unclear. Here, we found that visfatin facilitated cellular migration via matrix metalloproteinase-2 (MMP-2) production in human chondrosarcoma cells and overexpression of visfatin enhanced lung metastasis in a mouse model of chondrosarcoma. Visfatin-induced stimulation of MMP-2 synthesis and activation of the AP-1 transcription factor facilitated chondrosarcoma cell migration via the ERK, p38, and JNK signaling pathways. This evidence suggests that visfatin is worth targeting in the treatment of metastatic chondrosarcoma.


Assuntos
Neoplasias Ósseas/patologia , Condrossarcoma/patologia , Citocinas/fisiologia , Metaloproteinase 2 da Matriz/genética , Nicotinamida Fosforribosiltransferase/fisiologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Condrossarcoma/genética , Condrossarcoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/fisiologia , Células Tumorais Cultivadas
20.
J Neurosci ; 39(37): 7408-7427, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31331998

RESUMO

In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE receptor-binding properties and differentially affect Alzheimer's disease (AD), such that ApoE2 protects against, and ApoE4 predisposes to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes Aß clearance in AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an ApoE4>ApoE3>ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation. We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank order of ApoE4>ApoE3>ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.SIGNIFICANCE STATEMENT Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that ApoE4 impairs microglial function and impedes astrocytic Aß clearance in brain, but the direct neuronal effects of ApoE are poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling, the three ApoE variants exhibit a differential potency of ApoE4>ApoE3>ApoE2, which mirrors their relative effects on AD risk, suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Células-Tronco Embrionárias/fisiologia , Predisposição Genética para Doença/genética , Doença de Alzheimer/metabolismo , Animais , Animais Recém-Nascidos , Apolipoproteína E2/biossíntese , Apolipoproteína E3/biossíntese , Apolipoproteína E4/biossíntese , Células Cultivadas , Método Duplo-Cego , Feminino , Variação Genética/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Neurônios/fisiologia , Distribuição Aleatória , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa