Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(40): e2206990119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161913

RESUMO

Rapid detection of pathogenic bacteria within a few minutes is the key to control infectious disease. However, rapid detection of pathogenic bacteria in clinical samples is quite a challenging task due to the complex matrix, as well as the low abundance of bacteria in real samples. Herein, we employ a label-free single-particle imaging approach to address this challenge. By tracking the scattering intensity variation of single particles in free solution, the morphological heterogeneity can be well identified with particle size smaller than the diffraction limit, facilitating the morphological identification of single bacteria from a complex matrix in a label-free manner. Furthermore, the manipulation of convection in free solution enables the rapid screening of low-abundance bacteria in a small field of view, which significantly improves the sensitivity of single-particle detection. As a proof of concept demonstration, we are able to differentiate the group B streptococci (GBS)-positive samples within 10 min from vaginal swabs without using any biological reagents. This is the most rapid and low-cost method to the best of our knowledge. We believe that such a single-particle imaging approach will find wider applications in clinical diagnosis and disease control due to its high sensitivity, rapidity, simplicity, and low cost.


Assuntos
Bactérias , Doenças Transmissíveis , Análise de Célula Única , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças Transmissíveis/diagnóstico por imagem , Feminino , Humanos , Tamanho da Partícula , Análise de Célula Única/métodos , Esfregaço Vaginal
2.
Small ; 20(29): e2309463, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342668

RESUMO

Single-molecule catalysis reflects the heterogeneity of each molecule, providing a unique insight into the complex catalytic mechanism through the statistics of stochastic individuals. However, the present study methods for single-molecule catalysis are either complicated or have low throughput, limiting their rapid acquisition of single-molecule reaction kinetics with statistical significance. Here, a label-free imaging method is developed for the study of single-molecule catalysis in microdroplets with high throughput based on the absorption of the reaction molecules. A wide distribution of the catalytic reaction rate constant value of 238-2026 molecules s-1 is observed from 68 single enzymes. Interestingly, an exponential decayed distribution of the enzyme activity can be clearly observed due to the rapid denaturation of the enzymes. The denaturation mechanism of the Horse Radish Peroxidase (HRP) enzyme is clarified. It is revealed that the denaturation of each enzyme goes through a gradual decay rather than a truncated turn-off process from a single molecule point of view. This absorption-based method can be applied to most of the catalytic reactions with high throughput, which offers an indispensable route for the rapid statistical analysis of various single-molecule catalytic reactions, making it particularly suitable for the acquisition of catalytic kinetics from highly unstable enzymes.


Assuntos
Peroxidase do Rábano Silvestre , Cinética , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Catálise , Enzimas/química , Enzimas/metabolismo
3.
Anal Chem ; 93(29): 10372-10377, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34254785

RESUMO

Fast detection of low-concentration exosomes in body fluids is of great significance in understanding the pathogenesis and disease diagnosis but is quite a challenging work due to the complex matrix, tedious pretreatment, and relatively poor sensitivity without the aid of instruments. In this work, by simply using a filter membrane to enrich the exosomes at low concentrations and the use of CuS nanoparticles as labels, we were able to detect exosomes at concentrations as low as 2 × 103 particles/µL in a complex matrix by the naked eye. Due to its high sensitivity, specificity, and simplicity, it can be used for the diagnosis of direct prostate cancer via a 5 mL urine sample within 2 h without the use of any instrument. This method can also be applicable for the detection of other biological nanoparticles, such as viruses, at low concentrations in a complex matrix, offering a promising candidate for point-of-care disease diagnosis with low cost.


Assuntos
Líquidos Corporais , Exossomos , Nanopartículas , Humanos , Masculino , Sistemas Automatizados de Assistência Junto ao Leito
4.
Anal Chim Acta ; 1266: 341363, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244660

RESUMO

Cd2+ is one of the most toxic heavy metal ions that can be easily accumulated in human body via food chain. Thus, the onsite detection of Cd2+ in food is very important. However, present methods for Cd2+ detection either require the use of large equipment, or suffer from the severe interference from other analogical metal ions. This work establishes a facile Cd2+ mediated turn-on ECL method for highly selective detection of Cd2+ via cation exchanging with the nontoxic ZnS nanoparticles, owing to the unique surface-state ECL properties of CdS nanomaterials. The linear range of the calibration curve is from 7.0 × 10-8 to 1.0 × 10-6 M, while other analogical metal ions do not interfere, facilitating the selective detection of Cd2+ in oyster samples. The result agrees well with that obtained using atomic emission spectroscopy, indicating the potential for wider application of this approach.


Assuntos
Cádmio , Nanopartículas , Humanos , Luminescência , Nanopartículas/química , Sulfetos/química , Íons
5.
ACS Appl Mater Interfaces ; 13(1): 1766-1772, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373202

RESUMO

The assemblies of plasmonic nanoparticles (NPs) are the universal methods for enhancing their surface-enhanced Raman scattering (SERS) activities. However, the present methods suffer from the problems of poor reproducibility, complicated fabrication, or the adsorption of ligands on the surface, which limit their practical applications. In this work, by using a facile freeze-thaw method, we are able to fabricate the assemblies of Ag NPs with highly reproducible SERS activity without the use of ligands. Moreover, the Ag NPs can be well kept in a frozen state for a long time with few influences on the reproducibility (relative standard deviation, RSD ca. 7%), while those kept in colloid (4 °C) suffer from gradual surface oxidation and aggregation. Such a simple freeze-thaw method does not require the introduction of any ligands (or linkers) with long-term stability and reproducibility, implying its wide applications in practical SERS sensing.


Assuntos
Antibacterianos/análise , Nanopartículas Metálicas/química , Ofloxacino/análise , Prata/química , Poluentes Químicos da Água/análise , Pesqueiros , Congelamento , Limite de Detecção , Reprodutibilidade dos Testes , Análise Espectral Raman
6.
Analyst ; 135(5): 1124-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20419265

RESUMO

A heated copper microdisk electrode (HCME) was fabricated and successfully applied to capillary electrophoresis (CE) and CE-Chip as an electrochemical detector (ECD) for the detection of three carbohydrates and shikimic acid (SA) in Illicium verum Hook F., respectively. The temperature of HCME was heated by twin-wire-wound coil with direct current to reduce the magnetic interference. Coupled with CE and CE-chip, this detector exhibits both extremely stable and sensitive performance at elevated temperature compared with that at room temperature. In successive detection of three carbohydrates and shikimic acid (SA), the HCME exhibits very stable response with RSD of ca. 2% with elevated temperature without renewing the electrode, while at room temperature, RSD of ca. 20% is obtained. This is very important in practical applications that tedious works, such as polishing and re-fixing the electrode at each detection, can be therefore avoided. In addition, the sensitivity is about 2-6 time increased, and the linear range is about an order wider at elevated temperature (ca. 60 degrees C) than that at room temperature (ca. 25 degrees C).

7.
ACS Appl Mater Interfaces ; 10(28): 23900-23909, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29947509

RESUMO

Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal-air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn-air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g-1 at 10 mA cm-2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of -3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of -1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal-air batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa