Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2205783119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972449

RESUMO

Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.


Assuntos
Helianthus , Helianthus/genética , Genoma de Planta/genética , Melhoramento Vegetal , Genótipo , Genômica
2.
Bioessays ; 45(8): e2200237, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246937

RESUMO

Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.


Assuntos
Eucariotos , Recombinação Genética , Estudos Prospectivos , Meiose/genética , Evolução Biológica , Seleção Genética
3.
Am Nat ; 203(3): E78-E91, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358806

RESUMO

AbstractNumerous empirical studies have witnessed an increase in meiotic recombination rate in response to physiological stress imposed by unfavorable environmental conditions. Thus, inherited plasticity in recombination rate is hypothesized to be evolutionarily advantageous in changing environments. Previous theoretical models proceeded from the assumption that organisms increase their recombination rate when the environment becomes more stressful and demonstrated the evolutionary advantage of such a form of plasticity. Here, we numerically explore a complementary scenario-when the plastic increase in recombination rate is triggered by the environmental shifts. Specifically, we assume increased recombination in individuals developing in a different environment than their parents and, optionally, also in offspring of such individuals. We show that such shift-inducible recombination is always superior when the optimal constant recombination implies an intermediate rate. Moreover, under certain conditions, plastic recombination may also appear beneficial when the optimal constant recombination is either zero or free. The advantage of plastic recombination was better predicted by the range of the population's mean fitness over the period of environmental fluctuations, compared with the geometric mean fitness. These results hold for both panmixia and partial selfing, with faster dynamics of recombination modifier alleles under selfing. We think that recombination plasticity can be acquired under the control of environmentally responsive mechanisms, such as chromatin epigenetics remodeling.


Assuntos
Evolução Biológica , Recombinação Genética , Humanos , Estresse Fisiológico , Alelos
4.
Nature ; 546(7656): 148-152, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538728

RESUMO

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Assuntos
Evolução Molecular , Flores/genética , Flores/fisiologia , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Óleos de Plantas/metabolismo , Aclimatação/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Helianthus/classificação , Análise de Sequência de DNA , Estresse Fisiológico/genética , Óleo de Girassol , Transcriptoma/genética
5.
Mol Ecol ; 31(7): 2061-2072, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106854

RESUMO

Globalization and intensified volume of trade and transport around the world are accelerating the rate of biological invasions. It is therefore increasingly important to understand the processes through which invasive species colonize new habitats, often to the detriment of native flora. The initial steps of an invasion are particularly critical, as the introduced species relies on limited genetic diversity to adapt to a new environment. However, our understanding of this critical stage of the invasion is currently limited. We used a citizen science approach and social media to survey the distribution of invasive sunflower in Israel. We then sampled and sequenced a representative collection and compared it with available genomic data sets of North American wild sunflower, landraces and cultivars. We show that invasive wild sunflower is rapidly establishing throughout Israel, probably from a single, recent introduction from Texas, while maintaining high genetic diversity through ongoing gene flow. Since its introduction, invasive sunflower has spread quickly to most regions, and differentiation was detected despite extensive gene flow between clusters. Our findings suggest that rapid spread followed by continuous gene flow between diverging populations can serve as an efficient mechanism for maintaining sufficient genetic diversity at the early stages of invasion, promoting rapid adaptation and establishment in the new territory.


Assuntos
Ciência do Cidadão , Helianthus , Variação Genética/genética , Genômica , Helianthus/genética , Humanos , Espécies Introduzidas
6.
J Theor Biol ; 528: 110849, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34331961

RESUMO

Meiotic recombination and the factors affecting its rate and fate in nature have inspired many studies in theoretical evolutionary biology. Classical theoretical models have inferred that recombination can be favored under a rather restricted parameter range. Thus, the ubiquity of recombination in nature remains an open question. However, these models assumed constant recombination with an equal rate across all individuals within the population, whereas empirical evidence suggests that recombination may display certain sensitivity to ecological stressors and/or genotype fitness. Models assuming condition-dependent recombination show that such a strategy can often be favored over constant recombination. Moreover, in our recent model with panmictic populations subjected to purifying selection, fitness-dependent recombination was quite often favored even when any constant recombination was rejected. By using numerical modeling, we test whether such a 'recombination-rescuing potential' of fitness dependence holds also beyond panmixia, given the recognized effect of mating strategy on the evolution of recombination. We show that deviations from panmixia generally increase the recombination-rescuing potential of fitness dependence, with the strongest effect under intermediate selfing or high clonality. We find that under partial clonality, the evolutionary advantage of fitness-dependent recombination is determined mostly by selection against heterozygotes and additive-by-additive epistasis, while under partial selfing, additive-by-dominance epistasis is also a driver.


Assuntos
Modelos Genéticos , Reprodução , Genótipo , Heterozigoto , Humanos
7.
New Phytol ; 223(3): 1657-1670, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059137

RESUMO

Given the rising risk of extreme weather caused by climate change, enhancement of abiotic stress resistance in crops is increasingly urgent. But will the development of stress-resistant cultivars come at the cost of yield under ideal conditions? We hypothesize that this need not be inevitable, because resistance alleles with minimal pleiotropic costs may evade artificial selection and be retained in crop germplasm. Genome-wide association (GWA) analyses for variation in plant performance and flooding response were conducted in cultivated sunflower, a globally important oilseed. We observed broad variation in flooding responses among genotypes. Flooding resistance was not strongly correlated with performance in control conditions, suggesting no inherent trade-offs. Consistent with this finding, we identified a subset of loci conferring flooding resistance, but lacking antagonistic effects on growth. Genetic diversity loss at candidate genes underlying these loci was significantly less than for other resistance genes during cultivated sunflower evolution. Despite bottlenecks associated with domestication and improvement, low-cost resistance alleles remain within the cultivated sunflower gene pool. Thus, development of cultivars that are both flooding-tolerant and highly productive should be straightforward. Results further indicate that estimates of pleiotropic costs from GWA analyses explain, in part, patterns of diversity loss in crop genomes.


Assuntos
Inundações , Helianthus/genética , Helianthus/fisiologia , Estresse Fisiológico/genética , Alelos , Genes de Plantas , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Helianthus/anatomia & histologia , Helianthus/crescimento & desenvolvimento
8.
Proc Natl Acad Sci U S A ; 110(52): 21059-64, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324170

RESUMO

The opposite slopes of "Evolution Canyon" in Israel have served as a natural model system of adaptation to a microclimate contrast. Long-term studies of Drosophila melanogaster populations inhabiting the canyon have exhibited significant interslope divergence in thermal and drought stress resistance, candidate genes, mobile elements, habitat choice, mating discrimination, and wing-shape variation, all despite close physical proximity of the contrasting habitats, as well as substantial interslope migration. To examine patterns of genetic differentiation at the genome-wide level, we used high coverage sequencing of the flies' genomes. A total of 572 genes were significantly different in allele frequency between the slopes, 106 out of which were associated with 74 significantly overrepresented gene ontology (GO) terms, particularly so with response to stimulus and developmental and reproductive processes, thus corroborating previous observations of interslope divergence in stress response, life history, and mating functions. There were at least 37 chromosomal "islands" of interslope divergence and low sequence polymorphism, plausible signatures of selective sweeps, more abundant in flies derived from one (north-facing) of the slopes. Positive correlation between local recombination rate and the level of nucleotide polymorphism was also found.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Clima , Drosophila melanogaster/genética , Ecossistema , Genoma/genética , Animais , Frequência do Gene , Ontologia Genética , Redes Reguladoras de Genes/genética , Israel , Cadeias de Markov , Modelos Biológicos , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
9.
BMC Genomics ; 16: 777, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26462652

RESUMO

BACKGROUND: Wheat domestication is considered as one of the most important events in the development of human civilization. Wheat spikelets have undergone significant changes during evolution under domestication, resulting in soft glumes and larger kernels that are released easily upon threshing. Our main goal was to explore changes in transcriptome expression in glumes that accompanied wheat evolution under domestication. METHODS: A total of six tetraploid wheat accessions were selected for transcriptome profiling based on their rachis brittleness and glumes toughness. RNA pools from glumes of the central spikelet at heading time were used to construct cDNA libraries for sequencing. The trimmed reads from each library were separately aligned to the reference sub-genomes A and B, which were extracted from wheat survey sequence. Differentially expression analysis and functional annotation were performed between wild and domesticated wheat, to identity candidate genes associated with evolution under domestication. Selected candidate genes were validated using real time PCR. RESULTS: Transcriptome profiles of wild emmer wheat, wheat landraces, and wheat cultivars were compared using next generation sequencing (RNA-seq). We have found a total of 194,893 transcripts, of which 73,150 were shared between wild, landraces, and cultivars. From 781 differentially expressed genes (DEGs), 336 were down-regulated and 445 were up-regulated in the domesticated compared to wild wheat genotypes. Gene Ontology (GO) annotation assigned 293 DEGs (37.5 %) to GO term groups, of which 134 (17.1 %) were down-regulated and 159 (20.4 %) up-regulated in the domesticated wheat. Some of the down-regulated DEGs in domesticated wheat are related to the biosynthetic pathways that eventually define the mechanical strength of the glumes, such as cell wall, lignin, pectin and wax biosynthesis. The reduction in gene expression of such genes, may explain the softness of the glumes in the domesticated forms. In addition, we have identified genes involved in nutrient remobilization that may affect grain size and other agronomic traits evolved under domestication. CONCLUSIONS: The comparison of RNA-seq profiles between glumes of wheat groups differing in glumes toughness and rachis brittleness revealed a few DEGs that may be involved in glumes toughness and nutrient remobilization. These genes may be involved in processes of wheat improvement under domestication.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/genética , Triticum/genética , DNA Complementar/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genótipo , Humanos , Anotação de Sequência Molecular , Fenótipo , Tetraploidia
10.
BMC Plant Biol ; 15: 111, 2015 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-25935420

RESUMO

BACKGROUND: Drought is the major environmental stress threatening crop-plant productivity worldwide. Identification of new genes and metabolic pathways involved in plant adaptation to progressive drought stress at the reproductive stage is of great interest for agricultural research. RESULTS: We developed a novel Cross-Species meta-Analysis of progressive Drought stress at the reproductive stage (CSA:Drought) to identify key drought adaptive genes and mechanisms and to test their evolutionary conservation. Empirically defined filtering criteria were used to facilitate a robust integration of 17 deposited microarray experiments (148 arrays) of Arabidopsis, rice, wheat and barley. By prioritizing consistency over intensity, our approach was able to identify 225 differentially expressed genes shared across studies and taxa. Gene ontology enrichment and pathway analyses classified the shared genes into functional categories involved predominantly in metabolic processes (e.g. amino acid and carbohydrate metabolism), regulatory function (e.g. protein degradation and transcription) and response to stimulus. We further investigated drought related cis-acting elements in the shared gene promoters, and the evolutionary conservation of shared genes. The universal nature of the identified drought-adaptive genes was further validated in a fifth species, Brachypodium distachyon that was not included in the meta-analysis. qPCR analysis of 27, randomly selected, shared orthologs showed similar expression pattern as was found by the CSA:Drought.In accordance, morpho-physiological characterization of progressive drought stress, in B. distachyon, highlighted the key role of osmotic adjustment as evolutionary conserved drought-adaptive mechanism. CONCLUSIONS: Our CSA:Drought strategy highlights major drought-adaptive genes and metabolic pathways that were only partially, if at all, reported in the original studies included in the meta-analysis. These genes include a group of unclassified genes that could be involved in novel drought adaptation mechanisms. The identified shared genes can provide a useful resource for subsequent research to better understand the mechanisms involved in drought adaptation across-species and can serve as a potential set of molecular biomarkers for progressive drought experiments.


Assuntos
Adaptação Fisiológica/genética , Secas , Plantas/genética , Genes de Plantas , Regiões Promotoras Genéticas , Especificidade da Espécie
11.
BMC Plant Biol ; 15: 134, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26055625

RESUMO

BACKGROUND: The evolutionary basis of reproductive success in different environments is of major interest in the study of plant adaptation. Since the reproductive stage is particularly sensitive to drought, genes affecting reproductive success during this stage are key players in the evolution of adaptive mechanisms. We used an ecological genomics approach to investigate the reproductive response of drought-tolerant and sensitive wild barley accessions originating from different habitats in the Levant. RESULTS: We sequenced mRNA extracted from spikelets at the flowering stage in drought-treated and control plants. The barley genome was used for a reference-guided assembly and differential expression analysis. Our approach enabled to detect biological processes affecting grain production under drought stress. We detected novel candidate genes and differentially expressed alleles associated with drought tolerance. Drought associated genes were shown to be more conserved than non-associated genes, and drought-tolerance genes were found to evolve more rapidly than other drought associated genes. CONCLUSIONS: We show that reproductive success under drought stress is not a habitat-specific trait but a shared physiological adaptation that appeared to evolve recently in the evolutionary history of wild barley. Exploring the genomic basis of reproductive success under stress in crop wild progenitors is expected to have considerable ecological and economical applications.


Assuntos
Secas , Ecótipo , Genes de Plantas , Hordeum/genética , Hordeum/fisiologia , Análise de Sequência de RNA/métodos , Estresse Fisiológico/genética , Adaptação Fisiológica/genética , Alelos , Evolução Biológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/genética
12.
Mol Ecol ; 24(9): 2277-97, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25474505

RESUMO

Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Espécies Introduzidas , Epigênese Genética , Deriva Genética , Variação Genética , Genética Populacional , Fenótipo
13.
Mol Ecol ; 24(8): 1873-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25808860

RESUMO

Differential gene flow, reductions in diversity following linked selection and/or features of the genome can structure patterns of genomic differentiation during the process of speciation. Possible sources of reproductive isolation are well studied between coastal and inland subspecies groups of Swainson's thrushes, with differences in seasonal migratory behaviour likely playing a key role in reducing hybrid fitness. We assembled and annotated a draft reference genome for this species and generated whole-genome shotgun sequence data for populations adjacent to the hybrid zone between these groups. We documented substantial genomewide heterogeneity in relative estimates of genetic differentiation between the groups. Within population diversity was lower in areas of high relative differentiation, supporting a role for selective sweeps in generating this pattern. Absolute genetic differentiation was reduced in these areas, further suggesting that recurrent selective sweeps in the ancestral population and/or between divergent populations following secondary contact likely occurred. Relative genetic differentiation was also higher near centromeres and on the Z chromosome, suggesting that features of the genome also contribute to genomewide heterogeneity. Genes linked to migratory traits were concentrated in islands of differentiation, supporting previous suggestions that seasonal migration is under divergent selection between Swainson's thrushes. Differences in migratory behaviour likely play a central role in the speciation of many taxa; we developed the infrastructure here to permit future investigations into the role several candidate genes play in reducing gene flow between not only Swainson's thrushes but other species as well.


Assuntos
Migração Animal , Fluxo Gênico , Vigor Híbrido , Aves Canoras/genética , Animais , Variação Genética , Genética Populacional , Genoma , Masculino , Análise de Sequência de DNA
14.
Genome Biol Evol ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36449556

RESUMO

Rapid population growth and dramatic climatic turnovers are challenging global crop production. These challenges are spurring plant breeders to enhance adaptation and sustainability of major crops. One intriguing approach is to turn annual systems into perennial ones, yet long-term classical breeding efforts to induce perenniality have achieved limited success. Here, we report the results of our investigation of the genetic basis of bulb formation in the nonmodel organism Hordeum bulbosum, a perennial species closely related to barley. To identify candidate genes that regulate bulb formation in H. bulbosum, we applied two complementary approaches. First, we explored the evolutionary conservation of expressed genes among annual Poaceae species. Next, we assembled a reference transcriptome for H. bulbosum and conducted a differential expression (DE) analysis before and after stimulating bulb initiation. Low conservation was identified in genes related to perenniality in H. bulbosum compared with other species, including bulb development and sugar accumulation genes. We also inspected these genes using a DE analysis, which enabled identification of additional genes responsible for bulb initiation and flowering regulation. We propose a molecular model for the regulation of bulb formation involving storage organ development and starch biosynthesis genes. The high conservation observed along a major part of the pathway between H. bulbosum and barley suggests a potential for the application of biotechnological techniques to accelerate breeding toward perenniality in barley.


Assuntos
Hordeum , Hordeum/genética , Marcadores Genéticos , Genes de Plantas , Melhoramento Vegetal , Perfilação da Expressão Gênica
15.
Front Plant Sci ; 14: 1145371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998679

RESUMO

Introduction: Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods: We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results: Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion: The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.

16.
Mol Ecol ; 21(5): 1115-29, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22256891

RESUMO

The domestication of plants frequently results in a high level of genetic differentiation between domesticated plants and their wild progenitors. This process is counteracted by gene flow between wild and domesticated plants because they are usually able to inter-mate and to exchange genes. We investigated the extent of gene flow between wild barley Hordeum spontaneum and cultivated barley Hordeum vulgare, and its effect on population structure in wild barley by analysing a collection of 896 wild barley accessions (Barley1K) from Israel and all available Israeli H. vulgare accessions from the Israeli gene bank. We compared the performance of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) marker data genotyped over a core collection in estimating population parameters. Estimates of gene flow rates with SSR markers indicated a high level of introgression from cultivated barley into wild barley. After removing accessions from the wild barley sample that were recently admixed with cultivated barley, the inference of population structure improved significantly. Both SSR and SNP markers showed that the genetic population structure of wild barley in Israel corresponds to the three major ecogeographic regions: the coast, the Mediterranean north and the deserts in the Jordan valley and the South. Gene flow rates were estimated to be higher from north to south than in the opposite direction. As has been observed in other crop species, there is a significant exchange of alleles between the wild species and domesticated varieties that needs to be accounted for in the population genetic analysis of domestication.


Assuntos
Evolução Molecular , Fluxo Gênico , Genética Populacional , Hordeum/genética , Alelos , Teorema de Bayes , DNA de Plantas/genética , Marcadores Genéticos , Técnicas de Genotipagem , Israel , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
17.
Curr Opin Plant Biol ; 66: 102195, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217472

RESUMO

With increase in the number of sequenced genomes, it is now recognized that graph-based pangenomes can provide a comprehensive platform to study diversity in a population or species, from point mutations to large chromosomal rearrangements. By incorporating concepts from graph theory, a graph-pangenome can be studied directly to identify genomic regions and genes that underlie important evolutionary processes and traits. Here, I discuss how basic concepts in graph theory can be implemented to address questions in evolutionary genomics and guide future breeding efforts. Despite its compelling versatility, a graph-pangenome assembly is still challenging especially in species with large complex genomes. As technology is rapidly improving, the graph-pangenome is expected to become a central platform in genomics studies and applications. Thus, development of tools and methods that exploit the graph structure are urged to pave the route to evolutionary graph-pangenomics.


Assuntos
Evolução Biológica , Genômica , Genômica/métodos
18.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684235

RESUMO

Emmer wheat (Triticum turgidum ssp. dicoccum) is one of the world's oldest domesticated crops, and it harbors a potentially rich reservoir of agronomic and nutritional quality trait variations. The growing global demand for plant-based health-food niche markets has promoted new commercial interest in ancient grains, including Emmer wheat. Although T. dicoccum can also perform well under harsh environments, its cultivation along the Mediterranean agro-ecosystems is sparse. Here, we analyze a unique tetraploid wheat collection (n = 121) representing a wide geographic range of Emmer accessions, using 9897 DArTseq markers and on-field phenotypic characterization to quantify the extent of diversity among populations and the interactions between eco-geographic, genetic, and phenotypic attributes. Population genomic inferences based on the DArTseq data indicated that the collection could be split into four distinguished clusters in accordance with their eco-geographic origin although significant phenotypic variation was observed within clusters. Superior early vegetative vigor, shorter plant height, and early phenology were observed among emmer wheat accessions from Ethiopia compared to accessions from northern regions. This adaptive advantage highlights the potential of emmer wheat as an exotic germplasm for wheat improvement through breeding. The direct integration of such germplasm into conventional or organic farming agro-systems under the Mediterranean basin climate is also discussed.

19.
Front Plant Sci ; 12: 626565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584776

RESUMO

The diversity observed among crop wild relatives (CWRs) and their ability to flourish in unfavorable and harsh environments have drawn the attention of plant scientists and breeders for many decades. However, it is also recognized that the benefit gained from using CWRs in breeding is a potential rose between thorns of detrimental genetic variation that is linked to the trait of interest. Despite the increased interest in CWRs, little attention was given so far to the statistical, analytical, and technical considerations that should guide the sampling design, the germplasm characterization, and later its implementation in breeding. Here, we review the entire process of sampling and identifying beneficial genetic variation in CWRs and the challenge of using it in breeding. The ability to detect beneficial genetic variation in CWRs is strongly affected by the sampling design which should be adjusted to the spatial and temporal variation of the target species, the trait of interest, and the analytical approach used. Moreover, linkage disequilibrium is a key factor that constrains the resolution of searching for beneficial alleles along the genome, and later, the ability to deplete linked deleterious genetic variation as a consequence of genetic drag. We also discuss how technological advances in genomics, phenomics, biotechnology, and data science can improve the ability to identify beneficial genetic variation in CWRs and to exploit it in strive for higher-yielding and sustainable crops.

20.
Ecol Evol ; 11(11): 6657-6671, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141248

RESUMO

The spatial distribution of plants is constrained by demographic and ecogeographic factors that determine the range and abundance of the species. Wild grapevine (Vitis vinifera ssp. sylvestris) is distributed from Switzerland in the north to Israel in the south. However, little is known about the ecogeographic constraints of this species and its genetic and phenotypic characteristics, especially at the southern edge of its distribution range in the Levant region. In this study, we explore the population structure of southern Levantine wild grapevines and the correlation between demographic and ecogeographic characteristics. Based on our genetic analysis, the wild grapevine populations in this region can be divided into two major subgroups in accordance with a multivariate spatial and ecogeographical clustering model. The identified subpopulations also differ in morphological traits, mainly leaf hairiness which may imply adaptation to environmental stress. The findings suggest that the Upper Jordan River population was spread to the Sea of Galilee area and that a third smaller subpopulation at the south of the Golan Heights may represent a distinguished gene pool or a recent establishment of a new population. A spatial distribution model indicated that distance to water sources, Normalized difference vegetation index, and precipitation are the main environmental factors constraining V. v. sylvestris distribution at its southern distribution range. These factors in addition to limited gene flow between populations prevent further spread of wild grapevines southwards to semi-arid regions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa