Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 21(8)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34791177

RESUMO

Evolution has provided a vast diversity of yeasts that play fundamental roles in nature and society. This diversity is not limited to genotypically homogeneous species with natural interspecies hybrids and allodiploids that blur species boundaries frequently isolated. Thus, life cycle and the nature of breeding systems have profound effects on genome variation, shaping heterozygosity, genotype diversity and ploidy level. The apparent enrichment of hybrids in industry-related environments suggests that hybridization provides an adaptive route against stressors and creates interest in developing new hybrids for biotechnological uses. For example, in the Saccharomyces genus where regulatory circuits controlling cell identity, mating competence and meiosis commitment have been extensively studied, this body of knowledge is being used to combine interesting traits into synthetic F1 hybrids, to bypass F1 hybrid sterility and to dissect complex phenotypes by bulk segregant analysis. Although these aspects are less known in other industrially promising yeasts, advances in whole-genome sequencing and analysis are changing this and new insights are being gained, especially in the food-associated genera Zygosaccharomyces and Kluyveromyces. We discuss this new knowledge and highlight how deciphering cell identity circuits in these lineages will contribute significantly to identify the genetic determinants underpinning complex phenotypes and open new avenues for breeding programmes.


Assuntos
Kluyveromyces , Saccharomyces , Zygosaccharomyces , Animais , Hibridização Genética , Kluyveromyces/genética , Estágios do Ciclo de Vida , Zygosaccharomyces/genética
2.
Appl Microbiol Biotechnol ; 101(21): 7933-7944, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28942561

RESUMO

Restriction modification systems (R-M systems), consisting of a restriction endonuclease and a cognate methyltransferase, constitute an effective means of a cell to protect itself from foreign DNA. Identification, characterization, and deletion of the restriction modification system BliMSI, a putative isoschizomer of ClaI from Caryophanon latum, were performed in the wild isolate Bacillus licheniformis MS1. BliMSI was produced as recombinant protein in Escherichia coli, purified, and in vitro analysis demonstrated identical restriction endonuclease activity as for ClaI. A recombinant E. coli strain, expressing the heterologous bliMSIM gene, was constructed and used as the host for in vivo methylation of plasmids prior to their introduction into B. licheniformis to improve transformation efficiencies. The establishment of suicide plasmids in the latter was rendered possible. The subsequent deletion of the restriction endonuclease encoding gene, bliMSIR, caused doubled transformation efficiencies in the respective mutant B. licheniformis MS2 (∆bliMSIR). Along with above in vivo methylation, the establishment of further gene deletions (∆upp, ∆yqfD) was performed. The constructed triple mutant (∆bliMSIR, ∆upp, ∆yqfD) enables rapid genome manipulation, a requirement for genetic engineering of industrially important strains.


Assuntos
Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Enzimas de Restrição-Modificação do DNA , Deleção de Genes , Transformação Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa