Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(38): E8844-E8853, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30185553

RESUMO

Calcium (Ca2+) homeostasis is essential for neuronal function and survival. Altered Ca2+ homeostasis has been consistently observed in neurological diseases. How Ca2+ homeostasis is achieved in various cellular compartments of disease-relevant cell types is not well understood. Here we show in Drosophila Parkinson's disease (PD) models that Ca2+ transport from the endoplasmic reticulum (ER) to mitochondria through the ER-mitochondria contact site (ERMCS) critically regulates mitochondrial Ca2+ (mito-Ca2+) homeostasis in dopaminergic (DA) neurons, and that the PD-associated PINK1 protein modulates this process. In PINK1 mutant DA neurons, the ERMCS is strengthened and mito-Ca2+ level is elevated, resulting in mitochondrial enlargement and neuronal death. Miro, a well-characterized component of the mitochondrial trafficking machinery, mediates the effects of PINK1 on mito-Ca2+ and mitochondrial morphology, apparently in a transport-independent manner. Miro overexpression mimics PINK1 loss-of-function effect, whereas inhibition of Miro or components of the ERMCS, or pharmacological modulation of ERMCS function, rescued PINK1 mutant phenotypes. Mito-Ca2+ homeostasis is also altered in the LRRK2-G2019S model of PD and the PAR-1/MARK model of neurodegeneration, and genetic or pharmacological restoration of mito-Ca2+ level is beneficial in these models. Our results highlight the importance of mito-Ca2+ homeostasis maintained by Miro and the ERMCS to mitochondrial physiology and neuronal integrity. Targeting this mito-Ca2+ homeostasis pathway holds promise for a therapeutic strategy for neurodegenerative diseases.


Assuntos
Cálcio/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/patologia , Animais , Animais Geneticamente Modificados , Quelantes/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação com Perda de Função , Mitocôndrias/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
2.
Acta Neuropathol Commun ; 9(1): 169, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663454

RESUMO

Amyloid precursor protein (APP) metabolism is central to Alzheimer's disease (AD) pathogenesis, but the key etiological driver remains elusive. Recent failures of clinical trials targeting amyloid-ß (Aß) peptides, the proteolytic fragments of amyloid precursor protein (APP) that are the main component of amyloid plaques, suggest that the proteostasis-disrupting, key pathogenic species remain to be identified. Previous studies suggest that APP C-terminal fragment (APP.C99) can cause disease in an Aß-independent manner. The mechanism of APP.C99 pathogenesis is incompletely understood. We used Drosophila models expressing APP.C99 with the native ER-targeting signal of human APP, expressing full-length human APP only, or co-expressing full-length human APP and ß-secretase (BACE), to investigate mechanisms of APP.C99 pathogenesis. Key findings are validated in mammalian cell culture models, mouse 5xFAD model, and postmortem AD patient brain materials. We find that ribosomes stall at the ER membrane during co-translational translocation of APP.C99, activating ribosome-associated quality control (RQC) to resolve ribosome collision and stalled translation. Stalled APP.C99 species with C-terminal extensions (CAT-tails) resulting from inadequate RQC are prone to aggregation, causing endolysosomal and autophagy defects and seeding the aggregation of amyloid ß peptides, the main component of amyloid plaques. Genetically removing stalled and CAT-tailed APP.C99 rescued proteostasis failure, endolysosomal/autophagy dysfunction, neuromuscular degeneration, and cognitive deficits in AD models. Our finding of RQC factor deposition at the core of amyloid plaques from AD brains further supports the central role of defective RQC of ribosome collision and stalled translation in AD pathogenesis. These findings demonstrate that amyloid plaque formation is the consequence and manifestation of a deeper level proteostasis failure caused by inadequate RQC of translational stalling and the resultant aberrantly modified APP.C99 species, previously unrecognized etiological drivers of AD and newly discovered therapeutic targets.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide/biossíntese , Placa Amiloide/patologia , Biossíntese de Proteínas/fisiologia , Proteostase/fisiologia , Ribossomos/metabolismo , Animais , Drosophila , Humanos , Camundongos , Processamento de Proteína Pós-Traducional/fisiologia
3.
J Microbiol Biotechnol ; 18(2): 365-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18309285

RESUMO

Calcium entry through Cav3.2 Ca2+ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect Cav3.2 Ca2+ channels reconstituted in Xenopus oocytes. We found that Cav3.2 channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of Cav3.2 currents were not significantly changed by the drugs. These results imply that Cav3.2 channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo , Animais , Arsenicais/farmacologia , Canais de Cálcio Tipo T/genética , Eletrofisiologia/métodos , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Humanos , Oócitos/enzimologia , Oócitos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
4.
Dev Cell ; 37(2): 174-189, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27093086

RESUMO

Mitochondria play central roles in buffering intracellular Ca²âº transients. While basal mitochondrial Ca²âº (Ca²âº mito) is needed to maintain organellar physiology, Ca²âº mito overload can lead to cell death. How Ca²âº mito homeostasis is regulated is not well understood. Here we show that Miro, a known component of the mitochondrial transport machinery, regulates Drosophila neural stem cell (NSC) development through Ca²âº mito homeostasis control, independent of its role in mitochondrial transport. Miro interacts with Ca²âº transporters at the ER-mitochondria contact site (ERMCS). Its inactivation causes Ca²âº mito depletion and metabolic impairment, whereas its overexpression results in Ca²âº mito overload, mitochondrial morphology change, and apoptotic response. Both conditions impaired NSC lineage progression. Ca²âº mito homeostasis is influenced by Polo-mediated phosphorylation of a conserved residue in Miro, which positively regulates Miro localization to, and the integrity of, ERMCS. Our results elucidate a regulatory mechanism underlying Ca²âº mito homeostasis and how its dysregulation may affect NSC metabolism/development and contribute to disease.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Fosforilação
5.
J Pharmacol Exp Ther ; 318(1): 230-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16569752

RESUMO

Ca2+ influx through T-type Ca2+ channels is crucial for important physiological activities such as hormone secretion and neuronal excitability. However, it is not clear whether these channels are regulated by cAMP-dependent protein kinase A (PKA). In the present study, we examined whether PKA modulates Cav3.2 T-type channels reconstituted in Xenopus oocytes. Application of 10 microM forskolin, an adenylyl cyclase stimulant, increased Cav3.2 channel activity by 40+/-4% over 30 min and negatively shifted the steady-state inactivation curve (V50=-61.4+/-0.2 versus -65.5+/-0.1 mV). Forskolin did not affect other biophysical properties of Cav3.2 channels, including activation curve, current kinetics, and recovery from inactivation. Similar stimulation was achieved by applying 200 microM 8-bromo-cAMP, a membrane-permeable cAMP analog. The augmentation of Cav3.2 channel activity by forskolin was strongly inhibited by preincubation with 20 microM N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89), and reversed by subsequent application of 500 nM protein kinase A inhibitor peptide. The stimulation of Cav3.2 channel activity by PKA was mimicked by serotonin when 5HT7 receptor was coexpressed with Cav3.2 in Xenopus oocytes. Finally, using chimeric channels constructed by replacing individual cytoplasmic loops of Cav3.2 with those of the Nav1.4 channel, which is insensitive to PKA, we localized a region required for the PKA-mediated augmentation to the II-III loop of the Cav3.2.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/fisiologia , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Xenopus laevis
6.
J Physiol ; 577(Pt 2): 513-23, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17008378

RESUMO

T-type Ca2+ channels play essential roles in numerous cellular processes. Recently, we reported that phorbol-12-myristate-13-acetate (PMA) potently enhanced the current amplitude of Cav3.2 T-type channels reconstituted in Xenopus oocytes. Here, we have compared PMA modulation of the activities of Cav3.1, Cav3.2 and Cav3.3 channels, and have investigated the underlying mechanism. PMA augmented the current amplitudes of the three T-type channel isoforms, but the fold stimulations and time courses differed. The augmentation effects were not mimicked by 4alpha-PMA, an inactive stereoisomer of PMA, but were abolished by preincubation with protein kinase C (PKC) inhibitors, indicating that PMA augmented T-type channel currents via activation of oocyte PKC. The stimulation effect on Cav3.1 channel activity by PKC was mimicked by endothelin when endothelin receptor type A was coexpressed with Cav3.1 in the Xenopus oocyte system. Pharmacological studies combined with fluorescence imaging revealed that the surface density of Cav3.1 T-type channels was not significantly changed by activation of PKC. The PKC effect on Cav3.1 was localized to the cytoplasmic II-III loop using chimeric channels with individual cytoplasmic loops of Cav3.1 replaced by those of Cav2.1.


Assuntos
Canais de Cálcio Tipo T/efeitos dos fármacos , Proteína Quinase C/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/análise , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Relação Dose-Resposta a Droga , Endotelina-1/farmacologia , Ativação Enzimática/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Microinjeções , Mutação , Oócitos/química , Oócitos/metabolismo , Técnicas de Patch-Clamp , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptor de Endotelina A/efeitos dos fármacos , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa