Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 586(7827): 113-119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707573

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Betacoronavirus/crescimento & desenvolvimento , COVID-19 , Linhagem Celular , Inibidores de Cisteína Proteinase/análise , Inibidores de Cisteína Proteinase/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazonas , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Morfolinas/análise , Morfolinas/farmacologia , Pandemias , Pirimidinas , Reprodutibilidade dos Testes , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Triazinas/análise , Triazinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
3.
Proc Natl Acad Sci U S A ; 115(42): 10750-10755, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30282735

RESUMO

The chemical diversity and known safety profiles of drugs previously tested in humans make them a valuable set of compounds to explore potential therapeutic utility in indications outside those originally targeted, especially neglected tropical diseases. This practice of "drug repurposing" has become commonplace in academic and other nonprofit drug-discovery efforts, with the appeal that significantly less time and resources are required to advance a candidate into the clinic. Here, we report a comprehensive open-access, drug repositioning screening set of 12,000 compounds (termed ReFRAME; Repurposing, Focused Rescue, and Accelerated Medchem) that was assembled by combining three widely used commercial drug competitive intelligence databases (Clarivate Integrity, GVK Excelra GoStar, and Citeline Pharmaprojects), together with extensive patent mining of small molecules that have been dosed in humans. To date, 12,000 compounds (∼80% of compounds identified from data mining) have been purchased or synthesized and subsequently plated for screening. To exemplify its utility, this collection was screened against Cryptosporidium spp., a major cause of childhood diarrhea in the developing world, and two active compounds previously tested in humans for other therapeutic indications were identified. Both compounds, VB-201 and a structurally related analog of ASP-7962, were subsequently shown to be efficacious in animal models of Cryptosporidium infection at clinically relevant doses, based on available human doses. In addition, an open-access data portal (https://reframedb.org) has been developed to share ReFRAME screen hits to encourage additional follow-up and maximize the impact of the ReFRAME screening collection.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Criptosporidiose/parasitologia , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL
4.
J Am Chem Soc ; 142(25): 10899-10904, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32479075

RESUMO

Optimization of small-molecule probes or drugs is a synthetically lengthy, challenging, and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible sulfur(VI) fluoride exchange (SuFEx) click chemistry. A high-throughput screening hit benzyl (cyanomethyl)carbamate (Ki = 8 µM) against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RN═S(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products were directly screened to yield drug-like inhibitors with 480-fold higher potency (Ki = 18 nM). We showed that the improved molecule is active in a bacteria-host coculture. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Exotoxinas/antagonistas & inibidores , Compostos de Enxofre/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Química Click , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/toxicidade , Descoberta de Drogas , Exotoxinas/química , Exotoxinas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Microssomos Hepáticos/metabolismo , Estudo de Prova de Conceito , Ligação Proteica
5.
Proc Natl Acad Sci U S A ; 107(8): 3552-7, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133595

RESUMO

Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFbeta/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteoma/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala , Humanos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteoma/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais
6.
Nat Commun ; 14(1): 1951, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029122

RESUMO

Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Baço , Malária Falciparum/parasitologia , Plasmodium falciparum , Eritrócitos/parasitologia
7.
ACS Cent Sci ; 7(5): 815-830, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079898

RESUMO

Transcriptional coregulators, which mediate chromatin-dependent transcriptional signaling, represent tractable targets to modulate tumorigenic gene expression programs with small molecules. Genetic loss-of-function studies have recently implicated the transcriptional coactivator, ENL, as a selective requirement for the survival of acute leukemia and highlighted an essential role for its chromatin reader YEATS domain. Motivated by these discoveries, we executed a screen of nearly 300,000 small molecules and identified an amido-imidazopyridine inhibitor of the ENL YEATS domain (IC50 = 7 µM). Improvements to the initial screening hit were enabled by adopting and expanding upon a SuFEx-based approach to high-throughput medicinal chemistry, ultimately demonstrating that it is compatible with cell-based drug discovery. Through these efforts, we discovered SR-0813, a potent and selective ENL/AF9 YEATS domain inhibitor (IC50 = 25 nM). Armed with this tool and a first-in-class ENL PROTAC, SR-1114, we detailed the biological response of AML cells to pharmacological ENL disruption for the first time. Most notably, we discovered that ENL YEATS inhibition is sufficient to selectively suppress ENL target genes, including HOXA9/10, MYB, MYC, and a number of other leukemia proto-oncogenes. Cumulatively, our study establishes YEATS domain inhibition as a viable approach to disrupt the pathogenic function of ENL in acute leukemia and provides the first thoroughly characterized chemical probe for the ENL YEATS domain.

8.
Nat Commun ; 12(1): 3309, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083527

RESUMO

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , Pandemias , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , COVID-19/virologia , Linhagem Celular , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Mesocricetus , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
9.
PLoS Negl Trop Dis ; 14(9): e0008353, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970675

RESUMO

Diseases caused by pathogenic free-living amoebae include primary amoebic meningoencephalitis (Naegleria fowleri), granulomatous amoebic encephalitis (Acanthamoeba spp.), Acanthamoeba keratitis, and Balamuthia amoebic encephalitis (Balamuthia mandrillaris). Each of these are difficult to treat and have high morbidity and mortality rates due to lack of effective therapeutics. Since repurposing drugs is an ideal strategy for orphan diseases, we conducted a high throughput phenotypic screen of 12,000 compounds from the Calibr ReFRAME library. We discovered a total of 58 potent inhibitors (IC50 <1 µM) against N. fowleri (n = 19), A. castellanii (n = 12), and B. mandrillaris (n = 27) plus an additional 90 micromolar inhibitors. Of these, 113 inhibitors have never been reported to have activity against Naegleria, Acanthamoeba or Balamuthia. Rapid onset of action is important for new anti-amoeba drugs and we identified 19 compounds that inhibit N. fowleri in vitro within 24 hours (halofuginone, NVP-HSP990, fumagillin, bardoxolone, belaronib, and BPH-942, solithromycin, nitracrine, quisinostat, pabinostat, pracinostat, dacinostat, fimepinostat, sanguinarium, radicicol, acriflavine, REP3132, BC-3205 and PF-4287881). These compounds inhibit N. fowleri in vitro faster than any of the drugs currently used for chemotherapy. The results of these studies demonstrate the utility of phenotypic screens for discovery of new drugs for pathogenic free-living amoebae, including Acanthamoeba for the first time. Given that many of the repurposed drugs have known mechanisms of action, these compounds can be used to validate new targets for structure-based drug design.


Assuntos
Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Reposicionamento de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Acanthamoeba/efeitos dos fármacos , Balamuthia mandrillaris/efeitos dos fármacos , Bases de Dados de Produtos Farmacêuticos , Naegleria fowleri/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas
10.
Front Cell Infect Microbiol ; 10: 597931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324579

RESUMO

Candida auris is an emerging yeast which, since its first isolation about a decade ago, has spread rapidly and triggered major infectious outbreaks in health care facilities around the world. C. auris strains often display resistance to clinically-used antifungal agents, contributing to high mortality rates. Thus, there is an urgent need for new antifungals to contain the spread of this emerging multi-drug resistant pathogen and to improve patient outcomes. However, the timeline for the development of a new antifungal agent typically exceeds 10­15 years. Thus, repurposing of current drugs could significantly accelerate the development and eventual deployment of novel therapies for the treatment of C. auris infections. Toward this end, in this study we have profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules in search for known molecules with antifungal activity against C. auris; more specifically, those capable of inhibiting C. auris biofilm formation. From this library, 100 compounds displaying antifungal activity were identified in the initial screen, including 26 compounds for which a dose-response relationship with biofilm-inhibitory activity against C. auris could be confirmed. Of these, five were identified as the most interesting potential repositionable candidates. Due to their known pharmacological and human safety profiles, identification of such compounds should allow for their accelerated preclinical and clinical development for the treatment of C. auris infections.


Assuntos
Candida , Candidíase , Antifúngicos/farmacologia , Biofilmes , Candidíase/tratamento farmacológico , Humanos
11.
Microorganisms ; 8(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224991

RESUMO

Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, affects between 6 and 7 million people worldwide, with an estimated 300,000 to 1 million of these cases in the United States. In the chronic phase of infection, T. cruzi can cause severe gastrointestinal and cardiac disease, which can be fatal. Currently, only benznidazole is clinically approved by the FDA for pediatric use to treat this infection in the USA. Toxicity associated with this compound has driven the search for new anti-Chagas agents. Drug repurposing is a particularly attractive strategy for neglected diseases, as pharmacological parameters and toxicity are already known for these compounds, reducing costs and saving time in the drug development pipeline. Here, we screened 7680 compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library, a collection of drugs or compounds with confirmed clinical safety, against T. cruzi. We identified seven compounds of interest with potent in vitro activity against the parasite with a therapeutic index of 10 or greater, including the previously unreported activity of the antiherpetic compound 348U87. These results provide the framework for further development of new T. cruzi leads that can potentially move quickly to the clinic.

12.
ACS Chem Biol ; 15(4): 895-903, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32176478

RESUMO

ENL is a transcriptional coactivator that recruits elongation machinery to active cis-regulatory elements upon binding of its YEATS domain-a chromatin reader module-to acylated lysine side chains. Discovery chemistry for the ENL YEATS domain is highly motivated by its significance in acute leukemia pathophysiology, but cell-based assays able to support large-scale screening or hit validation efforts do not presently exist. Here, we report on the discovery of a target engagement assay that allows for high-throughput ligand discovery in living cells. This assay is based on the cellular thermal shift assay (CETSA) but does not require exposing cells to elevated temperatures, as small-molecule ligands are able to stabilize the ENL YEATS domain at 37 °C. By eliminating temperature shifts, we developed a simplified target engagement assay that requires just two steps: drug treatment and luminescence detection. To demonstrate its value for higher throughput applications, we miniaturized the assay to a 1536-well format and screened 37 120 small molecules, ultimately identifying an acyl-lysine-competitive ENL/AF9 YEATS domain inhibitor.


Assuntos
Bioensaio/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Células HEK293 , Humanos , Ligantes , Ligação Proteica , Domínios Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Elongação da Transcrição/antagonistas & inibidores
13.
bioRxiv ; 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511357

RESUMO

The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. As the development of a vaccine could require at least 12-18 months, and the typical timeline from hit finding to drug registration of an antiviral is >10 years, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. Here, we report the identification of 30 known drugs that inhibit viral replication. Of these, six were characterized for cellular dose-activity relationships, and showed effective concentrations likely to be commensurate with therapeutic doses in patients. These include the PIKfyve kinase inhibitor Apilimod, cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334, and the CCR1 antagonist MLN-3897. Since many of these molecules have advanced into the clinic, the known pharmacological and human safety profiles of these compounds will accelerate their preclinical and clinical evaluation for COVID-19 treatment.

14.
Antiviral Res ; 169: 104558, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31302150

RESUMO

Several mammarenaviruses, chiefly Lassa virus (LASV) in Western Africa and Junín virus (JUNV) in the Argentine Pampas, cause severe disease in humans and pose important public health problems in their endemic regions. Moreover, mounting evidence indicates that the worldwide-distributed mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The lack of licensed mammarenavirus vaccines and partial efficacy of current anti-mammarenavirus therapy limited to an off-label use of the nucleoside analog ribavirin underscore an unmet need for novel therapeutics to combat human pathogenic mammarenavirus infections. This task can be facilitated by the implementation of "drug repurposing" strategies to reduce the time and resources required to advance identified antiviral drug candidates into the clinic. We screened a drug repurposing library of 11,968 compounds (Repurposing, Focused Rescue and Accelerated Medchem [ReFRAME]) and identified several potent inhibitors of LCMV multiplication that had also strong anti-viral activity against LASV and JUNV. Our findings indicate that enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis, the pro-viral MCL1 apoptosis regulator, BCL2 family member protein and the mitochondrial electron transport complex III, play critical roles in the completion of the mammarenavirus life cycle, suggesting they represent potential druggable targets to counter human pathogenic mammarenavirus infections.


Assuntos
Antivirais/farmacologia , Arenaviridae/efeitos dos fármacos , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Células A549 , Animais , Apoptose , Arenaviridae/fisiologia , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Interferons/genética , Vírus Junin/efeitos dos fármacos , Vírus Lassa/efeitos dos fármacos , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinas/biossíntese , Pirimidinas/biossíntese , Células Vero , Replicação Viral/efeitos dos fármacos
15.
ACS Chem Biol ; 14(6): 1174-1182, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31074963

RESUMO

Lymphatic filariasis and onchocerciasis diseases caused by filarial parasite infections can lead to profound disability and affect millions of people worldwide. Standard mass drug administration campaigns require repetitive delivery of anthelmintics for years to temporarily block parasite transmission but do not cure infection because long-lived adult worms survive the treatment. Depletion of the endosymbiont Wolbachia, present in most filarial nematode species, results in death of adult worms and therefore represents a promising target for the treatment of filariasis. Here, we used a high-content imaging assay to screen the pure compounds collection of the natural products library at The Scripps Research Institute for anti- Wolbachia activity, leading to the identification of kirromycin B (1) as a lead candidate. Two additional congeners, kirromycin (2) and kirromycin C (3), were isolated and characterized from the same producing strain Streptomyces sp. CB00686. All three kirromycin congeners depleted Wolbachia in LDW1 Drosophila cells in vitro with half-maximal inhibitory concentrations (IC50) in nanomolar range, while doxycycline, a registered drug with anti- Wolbachia activity, showed lower activity with an IC50 of 152 ± 55 nM. Furthermore, 1-3 eliminated the Wolbachia endosymbiont in Brugia pahangi ovaries ex vivo with higher efficiency (65%-90%) at 1 µM than that of doxycycline (50%). No cytotoxicity against HEK293T and HepG2 mammalian cells was observed with 1-3 at the highest concentration (40 µM) used in the assay. These results suggest kirromycin is an effective lead scaffold, further exploration of which could potentially lead to the development of novel treatments for filarial nematode infections.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Descoberta de Drogas , Streptomyces/química , Wolbachia/efeitos dos fármacos , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Drosophila/microbiologia , Células HEK293 , Humanos , Piridonas/química , Piridonas/farmacologia
16.
Sci Transl Med ; 11(491)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068442

RESUMO

Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.


Assuntos
Antibacterianos/uso terapêutico , Descoberta de Drogas , Filariose/tratamento farmacológico , Filariose/parasitologia , Filarioidea/fisiologia , Quinazolinas/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Modelos Animais de Doenças , Feminino , Filarioidea/efeitos dos fármacos , Filarioidea/microbiologia , Ensaios de Triagem em Larga Escala , Camundongos , Fenótipo , Quinazolinas/química , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Wolbachia/efeitos dos fármacos
17.
Methods Enzymol ; 414: 530-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17110210

RESUMO

Recent advances in functional genomics have enabled genome-wide genetic studies in mammalian cells. These include the establishment of high-throughput transfection and viral propagation methodologies, the production of large-scale cDNA and siRNA libraries, and the development of sensitive assay detection processes and instrumentation. The latter has been significantly facilitated by the implementation of automated microscopy and quantitative image analysis, collectively referred to as high-content screening (HCS), toward cell-based functional genomics application. This technology can be applied to whole genome analysis of discrete molecular and phenotypic events at the level of individual cells and promises to significantly expand the scope of functional genomic analyses in mammalian cells. This chapter provides a comprehensive guide for curating and preparing function genomics libraries and performing HCS at the level of the genome.


Assuntos
Biblioteca Genômica , Genômica/instrumentação , Genômica/métodos , Animais , Automação , Biomarcadores/química , Separação Celular , DNA Complementar/metabolismo , Citometria de Fluxo , Biblioteca Gênica , Genoma Humano , Humanos , Microscopia de Fluorescência/métodos , Plasmídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa