Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834828

RESUMO

Age-related macular degeneration (AMD) is a blinding disease characterised by dysfunction of the retinal pigmented epithelium (RPE) which culminates in disruption or loss of the neurosensory retina. Genome-wide association studies have identified >60 genetic risk factors for AMD; however, the expression profile and functional role of many of these genes remain elusive in human RPE. To facilitate functional studies of AMD-associated genes, we developed a human RPE model with integrated CRISPR interference (CRISPRi) for gene repression by generating a stable ARPE19 cell line expressing dCas9-KRAB. We performed transcriptomic analysis of the human retina to prioritise AMD-associated genes and selected TMEM97 as a candidate gene for knockdown study. Using specific sgRNAs, we showed that knockdown of TMEM97 in ARPE19 reduced reactive oxygen species (ROS) levels and exerted a protective effect against oxidative stress-induced cell death. This work provides the first functional study of TMEM97 in RPE and supports a potential role of TMEM97 in AMD pathobiology. Our study highlights the potential for using CRISPRi to study AMD genetics, and the CRISPRi RPE platform generated here provided a useful in vitro tool for functional studies of AMD-associated genes.


Assuntos
Estudo de Associação Genômica Ampla , Degeneração Macular , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Estresse Oxidativo , Epitélio/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(39): E8214-E8223, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28878022

RESUMO

Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby's fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich "drusen-like" composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE-ECM interface.


Assuntos
Lâmina Basilar da Corioide/patologia , Oftalmopatias Hereditárias/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/patologia , Drusas Retinianas/patologia , Epitélio Pigmentado da Retina/citologia , Cegueira/genética , Cegueira/patologia , Células Cultivadas , Colágeno Tipo IV/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Drusas do Disco Óptico/congênito , Drusas do Disco Óptico/patologia , Epitélio Pigmentado da Retina/patologia , Inibidor Tecidual de Metaloproteinase-3/genética
3.
Mol Vis ; 25: 174-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30996586

RESUMO

Purpose: To evaluate the efficacy of using a CRISPR/Cas-mediated strategy to correct a common high-risk allele that is associated with age-related macular degeneration (AMD; rs1061170; NM_000186.3:c.1204T>C; NP_000177.2:p.His402Tyr) in the complement factor H (CFH) gene. Methods: A human embryonic kidney cell line (HEK293A) was engineered to contain the pathogenic risk variant for AMD (HEK293A-CFH). Several different base editor constructs (BE3, SaBE3, SaKKH-BE3, VQR-BE3, and Target-AID) and their respective single-guide RNA (sgRNA) expression cassettes targeting either the pathogenic risk variant allele in the CFH locus or the LacZ gene, as a negative control, were evaluated head-to-head for the incidence of a cytosine-to-thymine nucleotide correction. The base editor construct that showed appreciable editing activity was selected for further assessment in which the base-edited region was subjected to next-generation deep sequencing to quantify on-target and off-target editing efficacy. Results: The tandem use of the Target-AID base editor and its respective sgRNA demonstrated a base editing efficiency of facilitating a cytosine-to-thymine nucleotide correction in 21.5% of the total sequencing reads. Additionally, the incidence of insertions and deletions (indels) was detected in only 0.15% of the sequencing reads with virtually no off-target effects evident across the top 11 predicted off-target sites containing at least one cytosine in the activity window (n = 3, pooled amplicons). Conclusions: CRISPR-mediated base editing can be used to facilitate a permanent and stably inherited cytosine-to-thymine nucleotide correction of the rs1061170 SNP in the CFH gene with minimal off-target effects.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Citosina/metabolismo , Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Óperon Lac , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Timina/metabolismo
4.
Aging (Albany NY) ; 15(6): 1713-1733, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795578

RESUMO

Genetic and epidemiologic studies have significantly advanced our understanding of the genetic factors contributing to age-related macular degeneration (AMD). In particular, recent expression quantitative trait loci (eQTL) studies have highlighted POLDIP2 as a significant gene that confers risk of developing AMD. However, the role of POLDIP2 in retinal cells such as retinal pigment epithelium (RPE) and how it contributes to AMD pathology are unknown. Here we report the generation of a stable human RPE cell line ARPE-19 with POLDIP2 knockout using CRISPR/Cas, providing an in vitro model to investigate the functions of POLDIP2. We conducted functional studies on the POLDIP2 knockout cell line and showed that it retained normal levels of cell proliferation, cell viability, phagocytosis and autophagy. Also, we performed RNA sequencing to profile the transcriptome of POLDIP2 knockout cells. Our results highlighted significant changes in genes involved in immune response, complement activation, oxidative damage and vascular development. We showed that loss of POLDIP2 caused a reduction in mitochondrial superoxide levels, which is consistent with the upregulation of the mitochondrial superoxide dismutase SOD2. In conclusion, this study demonstrates a novel link between POLDIP2 and SOD2 in ARPE-19, which supports a potential role of POLDIP2 in regulating oxidative stress in AMD pathology.


Assuntos
Degeneração Macular , Superóxidos , Humanos , Superóxidos/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Estresse Oxidativo/genética , Epitélio Pigmentado da Retina/patologia , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Proteínas Nucleares/metabolismo
5.
Sci Rep ; 12(1): 9525, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680963

RESUMO

Bietti crystalline dystrophy (BCD) is an inherited retinal disease (IRD) caused by mutations in the CYP4V2 gene. It is a relatively common cause of IRD in east Asia. A number of features of this disease make it highly amenable to gene supplementation therapy. This study aims to validate a series of essential precursor in vitro experiments prior to developing a clinical gene therapy for BCD. We demonstrated that HEK293, ARPE19, and patient induced pluripotent stem cell (iPSC)-derived RPE cells transduced with AAV2 vectors encoding codon optimization of CYP4V2 (AAV2.coCYP4V2) resulted in elevated protein expression levels of CYP4V2 compared to those transduced with AAV2 vectors encoding wild type CYP4V2 (AAV2.wtCYP4V2), as assessed by immunocytochemistry and western blot. Similarly, we observed significantly increased CYP4V2 enzyme activity in cells transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. We also showed CYP4V2 expression in human RPE/choroid explants transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. These preclinical data support the further development of a gene supplementation therapy for a currently untreatable blinding condition-BCD. Codon-optimized CYP4V2 transgene was superior to wild type in terms of protein expression and enzyme activity. Ex vivo culture of human RPE cells provided an effective approach to test AAV-mediated transgene delivery.


Assuntos
Distrofias Hereditárias da Córnea , Família 4 do Citocromo P450 , Terapia Genética , Doenças Retinianas , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/terapia , Família 4 do Citocromo P450/genética , Análise Mutacional de DNA , Células HEK293 , Humanos , Mutação , Doenças Retinianas/genética , Doenças Retinianas/terapia
6.
ACS Appl Mater Interfaces ; 14(7): 8669-8679, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35166105

RESUMO

Conventional methods of neuronal differentiation in human induced pluripotent stem cells (iPSCs) are tedious and complicated, involving multistage protocols with complex cocktails of growth factors and small molecules. Artificial extracellular matrices with a defined surface topography and chemistry represent a promising venue to improve neuronal differentiation in vitro. In the present study, we test the impact of a type of colloidal self-assembled patterns (cSAPs) called binary colloidal crystals (BCCs) on neuronal differentiation. We developed a CRISPR activation (CRISPRa) iPSC platform that constitutively expresses the dCas9-VPR system, which allows robust activation of the proneural transcription factor NEUROD1 to rapidly induce neuronal differentiation within 7 days. We show that the combinatorial use of BCCs can further improve this neuronal differentiation system. In particular, our results indicate that fine tuning of silica (Si) and polystyrene (PS) particle size is critical to generate specific topographies to improve neuronal differentiation and branching. BCCs with 5 µm silica and 100 nm carboxylated PS (PSC) have the most prominent effect on increasing neurite outgrowth and more complex ramification, while BCCs with 2 µm Si and 65 nm PSC particles are better at promoting neuronal enrichment. These results indicate that biophysical cues can support rapid differentiation and improve neuronal maturation. In summary, our combinatorial approach of CRISPRa and BCCs provides a robust and rapid pipeline for the in vitro production of human neurons. Specific BCCs can be adapted to the late stages of neuronal differentiation protocols to improve neuronal maturation, which has important implications in tissue engineering, in vitro biological studies, and disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Neurônios , Engenharia Tecidual
7.
NAR Genom Bioinform ; 2(2): lqaa034, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575589

RESUMO

The libraries generated by high-throughput single cell RNA-sequencing (scRNA-seq) platforms such as the Chromium from 10× Genomics require considerable amounts of sequencing, typically due to the large number of cells. The ability to use these data to address biological questions is directly impacted by the quality of the sequence data. Here we have compared the performance of the Illumina NextSeq 500 and NovaSeq 6000 against the BGI MGISEQ-2000 platform using identical Single Cell 3' libraries consisting of over 70 000 cells generated on the 10× Genomics Chromium platform. Our results demonstrate a highly comparable performance between the NovaSeq 6000 and MGISEQ-2000 in sequencing quality, and the detection of genes, cell barcodes, Unique Molecular Identifiers. The performance of the NextSeq 500 was also similarly comparable to the MGISEQ-2000 based on the same metrics. Data generated by both sequencing platforms yielded similar analytical outcomes for general single-cell analysis. The performance of the NextSeq 500 and MGISEQ-2000 were also comparable for the deconvolution of multiplexed cell pools via variant calling, and detection of guide RNA (gRNA) from a pooled CRISPR single-cell screen. Our study provides a benchmark for high-capacity sequencing platforms applied to high-throughput scRNA-seq libraries.

8.
Front Cell Neurosci ; 14: 570917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132845

RESUMO

CRISPR/Cas has opened the prospect of direct gene correction therapy for some inherited retinal diseases. Previous work has demonstrated the utility of adeno-associated virus (AAV) mediated delivery to retinal cells in vivo; however, with the expanding repertoire of CRISPR/Cas endonucleases, it is not clear which of these are most efficacious for retinal editing in vivo. We sought to compare CRISPR/Cas endonuclease activity using both single and dual AAV delivery strategies for gene editing in retinal cells. Plasmids of a dual vector system with SpCas9, SaCas9, Cas12a, CjCas9 and a sgRNA targeting YFP, as well as a single vector system with SaCas9/YFP sgRNA were generated and validated in YFP-expressing HEK293A cell by flow cytometry and the T7E1 assay. Paired CRISPR/Cas endonuclease and its best performing sgRNA was then packaged into an AAV2 capsid derivative, AAV7m8, and injected intravitreally into CMV-Cre:Rosa26-YFP mice. SpCas9 and Cas12a achieved better knockout efficiency than SaCas9 and CjCas9. Moreover, no significant difference in YFP gene editing was found between single and dual CRISPR/SaCas9 vector systems. With a marked reduction of YFP-positive retinal cells, AAV7m8 delivered SpCas9 was found to have the highest knockout efficacy among all investigated endonucleases. We demonstrate that the AAV7m8-mediated delivery of CRISPR/SpCas9 construct achieves the most efficient gene modification in neurosensory retinal cells in vivo.

9.
Front Cell Neurosci ; 13: 147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130844

RESUMO

[This corrects the article DOI: 10.3389/fncel.2018.00460.].

10.
Mol Ther Nucleic Acids ; 14: 184-191, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594894

RESUMO

Gain-of-function studies often require the tedious cloning of transgene cDNA into vectors for overexpression beyond the physiological expression levels. The rapid development of CRISPR/Cas technology presents promising opportunities to address these issues. Here, we report a simple, cloning-free method to induce gene expression at an endogenous locus using CRISPR/Cas9 activators. Our strategy utilizes synthesized sgRNA expression cassettes to direct a nuclease-null Cas9 complex fused with transcriptional activators (VP64, p65, and Rta) for site-specific induction of endogenous genes. This strategy allows rapid initiation of gain-of-function studies in the same day. Using this approach, we tested two CRISPR activation systems, dSpCas9VPR and dSaCas9VPR, for induction of multiple genes in human and rat cells. Our results showed that both CRISPR activators allow efficient induction of six different neural development genes (CRX, RORB, RAX, OTX2, ASCL1, and NEUROD1) in human cells, whereas the rat cells exhibit more variable and less-efficient levels of gene induction, as observed in three different genes (Ascl1, Neurod1, Nrl). Altogether, this study provides a simple method to efficiently activate endogenous gene expression using CRISPR/Cas9 activators, which can be applied as a rapid workflow to initiate gain-of-function studies for a range of molecular- and cell-biology disciplines.

11.
Hum Gene Ther ; 30(11): 1349-1360, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373227

RESUMO

Safe delivery of CRISPR/Cas endonucleases remains one of the major barriers to the widespread application of in vivo genome editing. We previously reported the utility of adeno-associated virus (AAV)-mediated CRISPR/Cas genome editing in the retina; however, with this type of viral delivery system, active endonucleases will remain in the retina for an extended period, making genotoxicity a significant consideration in clinical applications. To address this issue, we have designed a self-destructing "kamikaze" CRISPR/Cas system that disrupts the Cas enzyme itself following expression. Four guide RNAs (sgRNAs) were initially designed to target Streptococcus pyogenes Cas9 (SpCas9) and after in situ validation, the selected sgRNAs were cloned into a dual AAV vector. One construct was used to deliver SpCas9 and the other delivered sgRNAs directed against SpCas9 and the target locus (yellow fluorescent protein [YFP]), in the presence of mCherry. Both constructs were packaged into AAV2 vectors and intravitreally administered in C57BL/6 and Thy1-YFP transgenic mice. After 8 weeks, the expression of SpCas9 and the efficacy of YFP gene disruption were quantified. A reduction of SpCas9 mRNA was found in retinas treated with AAV2-mediated YFP/SpCas9 targeting CRISPR/Cas compared with those treated with YFP targeting CRISPR/Cas alone. We also show that AAV2-mediated delivery of YFP/SpCas9 targeting CRISPR/Cas significantly reduced the number of YFP fluorescent cells among mCherry-expressing cells (∼85.5% reduction compared with LacZ/SpCas9 targeting CRISPR/Cas) in the transfected retina of Thy1-YFP transgenic mice. In conclusion, our data suggest that a self-destructive "kamikaze" CRISPR/Cas system can be used as a robust tool for genome editing in the retina, without compromising on-target efficiency.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Retina/metabolismo , Animais , Sequência de Bases , Eletrorretinografia , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , RNA Guia de Cinetoplastídeos/genética , Reprodutibilidade dos Testes , Retina/fisiologia , Tomografia de Coerência Óptica
12.
Front Cell Neurosci ; 12: 460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555303

RESUMO

Cellular reprogramming technology holds great potential for tissue repair and regeneration to replace cells that are lost due to diseases or injuries. In addition to the landmark discovery of induced pluripotent stem cells, advances in cellular reprogramming allow the direct lineage conversion of one somatic cell type to another using defined transcription factors. This direct reprogramming technology represents a rapid way to generate target cells in the laboratory, which can be used for transplantation and studies of biology and diseases. More importantly, recent work has demonstrated the exciting application of direct reprogramming to stimulate regeneration in vivo, providing an alternative approach to transplantation of donor cells. Here, we provide an overview of the underlying concept of using cellular reprogramming to convert cell fates and discuss the current advances in cellular reprogramming both in vitro and in vivo, with particular focuses on the neural and retinal systems. We also discuss the potential of in vivo reprogramming in regenerative medicine, the challenges and potential solutions to translate this technology to the clinic.

13.
Methods Mol Biol ; 1715: 113-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29188510

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) is used by some bacteria and most archaea to protect against viral phage intrusion and has recently been adapted to allow for efficient editing of the mammalian genome. Whilst CRISPR/Cas-based technology has been used to modify genes in mammalian cells in vitro, delivery of CRISPR/Cas system into mammalian tissue and/or organs is more difficult and often requires additional vectors. With the use of adeno-associated virus (AAV) gene delivery system, active CRISPR/Cas enzyme can be maintained for an extended period of time and enable efficient editing of genome in the retina in vivo. Herein we outline the method to edit the genome in mouse retina using a dual AAV vector -mediated CRISPR/Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Retina/metabolismo , Animais , Genoma , Camundongos
14.
BMC Med Genomics ; 11(1): 61, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037347

RESUMO

BACKGROUND: Giant cell arteritis (GCA) is the most common form of vasculitis affecting elderly people. It is one of the few true ophthalmic emergencies but symptoms and signs are variable thereby making it a challenging disease to diagnose. A temporal artery biopsy is the gold standard to confirm GCA, but there are currently no specific biochemical markers to aid diagnosis. We aimed to identify a less invasive method to confirm the diagnosis of GCA, as well as to ascertain clinically relevant predictive biomarkers by studying the transcriptome of purified peripheral CD4+ and CD8+ T lymphocytes in patients with GCA. METHODS: We recruited 16 patients with histological evidence of GCA at the Royal Victorian Eye and Ear Hospital, Melbourne, Australia, and aimed to collect blood samples at six time points: acute phase, 2-3 weeks, 6-8 weeks, 3 months, 6 months and 12 months after clinical diagnosis. CD4+ and CD8+ T-cells were positively selected at each time point through magnetic-assisted cell sorting. RNA was extracted from all 195 collected samples for subsequent RNA sequencing. The expression profiles of patients were compared to those of 16 age-matched controls. RESULTS: Over the 12-month study period, polynomial modelling analyses identified 179 and 4 statistically significant transcripts with altered expression profiles (FDR < 0.05) between cases and controls in CD4+ and CD8+ populations, respectively. In CD8+ cells, two transcripts remained differentially expressed after 12 months; SGTB, associated with neuronal apoptosis, and FCGR3A, associatied with Takayasu arteritis. We detected genes that correlate with both symptoms and biochemical markers used for predicting long-term prognosis. 15 genes were shared across 3 phenotypes in CD4 and 16 across CD8 cells. In CD8, IL32 was common to 5 phenotypes including Polymyalgia Rheumatica, bilateral blindness and death within 12 months. CONCLUSIONS: This is the first longitudinal gene expression study undertaken to identify robust transcriptomic biomarkers of GCA. Our results show cell type-specific transcript expression profiles, novel gene-phenotype associations, and uncover important biological pathways for this disease. In the acute phase, the gene-phenotype relationships we have identified could provide insight to potential disease severity and as such guide in initiating appropriate patient management.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Perfilação da Expressão Gênica , Arterite de Células Gigantes/genética , Arterite de Células Gigantes/imunologia , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Fenótipo , Fatores de Tempo
15.
Anticancer Res ; 27(1A): 327-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17352250

RESUMO

BACKGROUND: DMXAA (5,6-dimethylxanthenone-4-acetic acid; AS1404), a vascular disrupting agent currently in clinical trials, induces tumour endothelial cell apoptosis in vivo in mice and in cancer patients. DMXAA activates NF-kappaB in many different cell types. In this study, whether DMXAA-induced endothelial cell apoptosis was NF-kappaB dependent was determined. MATERIALS AND METHODS: HUVEC endothelial and T24 endothelial-like cells were treated with DMXAA and apoptosis was measured by terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL). NF-kappaB activation was measured by electrophoretic mobility shift assays (EMSA). T24 cells were transfected with IkappaBalphaM, a mutant form of the IkappaBalpha gene which cannot be phosphorylated and degraded, hence preventing NF-kappaB expression. RESULTS: No NF-kappaB up-regulation was detected in apoptotic HUVEC treated with DMXAA. The IkappaBalphaM-transfected T24 cells showed similar apoptotic responses to those of parental cells. CONCLUSION: The DMXAA-induced apoptosis is neither mediated by, nor inhibited by, the expression of the NF-kappaB pathway.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , NF-kappa B/metabolismo , Xantonas/farmacologia , Antineoplásicos/farmacologia , Apoptose/fisiologia , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Mutação , Inibidor de NF-kappaB alfa , Transfecção
16.
Pharmacol Ther ; 177: 32-43, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28223228

RESUMO

The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models.


Assuntos
Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas , Animais , Oftalmopatias/tratamento farmacológico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico
17.
Gene ; 612: 36-48, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989772

RESUMO

Transcription of the ribosomal RNA genes (rDNA) by RNA polymerase I (Pol I) is a major control step for ribosome synthesis and is tightly linked to cellular growth. However, the question of whether this process is modulated primarily at the level of transcription initiation or elongation is controversial. Studies in markedly different cell types have identified either initiation or elongation as the major control point. In this study, we have re-examined this question in NIH3T3 fibroblasts using a combination of metabolic labeling of the 47S rRNA, chromatin immunoprecipitation analysis of Pol I and overexpression of the transcription initiation factor Rrn3. Acute manipulation of growth factor levels altered rRNA synthesis rates over 8-fold without changing Pol I loading onto the rDNA. In fact, robust changes in Pol I loading were only observed under conditions where inhibition of rDNA transcription was associated with chronic serum starvation or cell cycle arrest. Overexpression of the transcription initiation factor Rrn3 increased loading of Pol I on the rDNA but failed to enhance rRNA synthesis in either serum starved, serum treated or G0/G1 arrested cells. Together these data suggest that transcription elongation is rate limiting for rRNA synthesis. We propose that transcription initiation is required for rDNA transcription in response to cell cycle cues, whereas elongation controls the dynamic range of rRNA synthesis output in response to acute growth factor modulation.


Assuntos
Ciclo Celular , Divisão Celular , RNA Polimerase I/genética , Transcrição Gênica , Animais , Camundongos , Células NIH 3T3
19.
Aging (Albany NY) ; 9(4): 1341-1350, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28455970

RESUMO

Cybrid technology was used to replace Leber hereditary optic neuropathy (LHON) causing mitochondrial DNA (mtDNA) mutations from patient-specific fibroblasts with wildtype mtDNA, and mutation-free induced pluripotent stem cells (iPSCs) were generated subsequently. Retinal ganglion cell (RGC) differentiation demonstrates increased cell death in LHON-RGCs and can be rescued in cybrid corrected RGCs.


Assuntos
DNA Mitocondrial/genética , Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas , Mitocôndrias/genética , Atrofia Óptica Hereditária de Leber/terapia , Transplante de Células-Tronco/métodos , Apoptose , Morte Celular , Diferenciação Celular , DNA Mitocondrial/metabolismo , DNA Mitocondrial/uso terapêutico , Humanos , Repetições de Microssatélites , Células Ganglionares da Retina/patologia , Superóxidos/metabolismo
20.
SLAS Discov ; 22(8): 1016-1025, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28287872

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Automação , Adesão Celular , Linhagem Celular , Reprogramação Celular , Fibroblastos/citologia , Humanos , Retina/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa