Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Med ; 13(10): e1002139, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27727279

RESUMO

BACKGROUND: Interleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs. METHODS AND FINDINGS: To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D), a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low) from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39) found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = -0.052, 0.254) and 0.497 × 106 IU/m2 (SE = 0.092, 95% CI = 0.316, 0.678), respectively. On analysis of secondary outcomes, using a highly sensitive IL-2 assay, the observed plasma concentrations of the drug at 90 min exceeded the hypothetical Treg-specific therapeutic window determined in vitro (0.015-0.24 IU/ml), even at the lowest doses (0.040 × 106 and 0.045 × 106 IU/m2) administered. A rapid decrease in Treg frequency in the circulation was observed at 90 min and at day 1, which was dose dependent (mean decrease 11.6%, SE = 2.3%, range 10.0%-48.2%, n = 37), rebounding at day 2 and increasing to frequencies above baseline over 7 d. Teffs, natural killer cells, and eosinophils also responded, with their frequencies rapidly and dose-dependently decreased in the blood, then returning to, or exceeding, pretreatment levels. Furthermore, there was a dose-dependent down modulation of one of the two signalling subunits of the IL-2 receptor, the ß chain (CD122) (mean decrease = 58.0%, SE = 2.8%, range 9.8%-85.5%, n = 33), on Tregs and a reduction in their sensitivity to aldesleukin at 90 min and day 1 and 2 post-treatment. Due to blood volume requirements as well as ethical and practical considerations, the study was limited to adults and to analysis of peripheral blood only. CONCLUSIONS: The DILT1D trial results, most notably the early altered trafficking and desensitisation of Tregs induced by a single ultra-low dose of aldesleukin that resolves within 2-3 d, inform the design of the next trial to determine a repeat dosing regimen aimed at establishing a steady-state Treg frequency increase of 20%-50%, with the eventual goal of preventing T1D. TRIAL REGISTRATION: ISRCTN Registry ISRCTN27852285; ClinicalTrials.gov NCT01827735.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Interleucina-2/análogos & derivados , Linfócitos T Reguladores/efeitos dos fármacos , Adolescente , Adulto , Biomarcadores , Quimiocinas/biossíntese , Relação Dose-Resposta a Droga , Eosinófilos/efeitos dos fármacos , Feminino , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Interleucina-2/efeitos adversos , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Adulto Jovem
2.
J Immunol ; 193(2): 889-900, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928993

RESUMO

Expression of the CTLA-4 gene is absolutely required for immune homeostasis, but aspects of its molecular nature remain undefined. In particular, the characterization of the soluble CTLA-4 (sCTLA-4) protein isoform generated by an alternatively spliced mRNA of CTLA4 lacking transmembrane-encoding exon 3 has been hindered by the difficulty in distinguishing it from the transmembrane isoform of CTLA-4, Tm-CTLA-4. In the current study, sCTLA-4 has been analyzed using novel mAbs and polyclonal Abs specific for its unique C-terminal amino acid sequence. We demonstrate that the sCTLA-4 protein is secreted at low levels following the activation of primary human CD4(+) T cells and is increased only rarely in the serum of autoimmune patients. Unexpectedly, during our studies aimed to define the kinetics of sCTLA-4 produced by activated human CD4(+) T cells, we discovered that Tm-CTLA-4 is associated with microvesicles produced by the activated cells. The functional roles of sCTLA-4 and microvesicle-associated Tm-CTLA-4 warrant further investigation, especially as they relate to the multiple mechanisms of action described for the more commonly studied cell-associated Tm-CTLA-4.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Vesículas Citoplasmáticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Adulto , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Western Blotting , Antígeno CTLA-4/sangue , Antígeno CTLA-4/genética , Células Cultivadas , Vesículas Citoplasmáticas/ultraestrutura , Diabetes Mellitus Tipo 1/sangue , Feminino , Doença de Graves/sangue , Células HeLa , Humanos , Imunoensaio , Masculino , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Solubilidade , Adulto Jovem
3.
J Immunol ; 190(7): 3109-20, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23427248

RESUMO

In the NOD mouse model of type 1 diabetes, insulin-dependent diabetes (Idd) loci control the development of insulitis and diabetes. Independently, protective alleles of Idd3/Il2 or Idd5 are able to partially protect congenic NOD mice from insulitis and diabetes, and to partially tolerize islet-specific CD8(+) T cells. However, when the two regions are combined, mice are almost completely protected, strongly suggesting the existence of genetic interactions between the two loci. Idd5 contains at least three protective subregions/causative gene candidates, Idd5.1/Ctla4, Idd5.2/Slc11a1, and Idd5.3/Acadl, yet it is unknown which of them interacts with Idd3/Il2. Through the use of a series of novel congenic strains containing the Idd3/Il2 region and different combinations of Idd5 subregion(s), we defined these genetic interactions. The combination of Idd3/Il2 and Idd5.3/Acadl was able to provide nearly complete protection from type 1 diabetes, but all three Idd5 subregions were required to protect from insulitis and fully restore self-tolerance. By backcrossing a Slc11a1 knockout allele onto the NOD genetic background, we have demonstrated that Slc11a1 is responsible for the diabetes protection resulting from Idd5.2. We also used Slc11a1 knockout-SCID and Idd5.2-SCID mice to show that both loss-of-function alleles provide protection from insulitis when expressed on the SCID host alone. These results lend further support to the hypothesis that Slc11a1 is Idd5.2.


Assuntos
Diabetes Mellitus Tipo 1/genética , Epistasia Genética , Locos de Características Quantitativas , Alelos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Feminino , Predisposição Genética para Doença , Glucose-6-Fosfatase/imunologia , Tolerância Imunológica/genética , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas/imunologia
4.
J Immunol ; 186(2): 1259-67, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21169553

RESUMO

We previously described the NOD.c3c4 mouse, which is protected from type 1 diabetes (T1D) because of protective alleles at multiple insulin-dependent diabetes (Idd) genes, but develops autoimmune biliary disease (ABD) resembling primary biliary cirrhosis (PBC). In this paper, we characterize the NOD.ABD strain, which is genetically related to the NOD.c3c4 strain but develops both ABD and T1D. Histologically, NOD.ABD biliary disease is indistinguishable from that in NOD.c3c4 mice. The frequency of effector memory (CD44(+)CD62L(-)) and central memory (CD44(+)CD62L(+)) CD8 T cells is significantly increased in the intrahepatic lymphocyte fraction of NOD.ABD mice, and NOD.ABD CD8 T cells produce more IFN-γ and TNF-α, compared with controls. NOD.ABD splenocytes can transfer ABD and T1D to NOD.c3c4 scid mice, but only T1D to NOD scid mice, suggesting that the genetic origin of the target organ and/or its innate immune cells is critical to disease pathogenesis. The disease transfer model, importantly, shows that biliary duct damage (characteristic of PBC) and inflammation precede biliary epithelial cell proliferation. Unlike T1D where both CD4 and CD8 T cells are required for disease transfer, purified NOD.ABD CD8 T cells can transfer liver inflammation into NOD.c3c4 scid recipients, and disease transfer is ameliorated by cotransferring T regulatory cells. Unlike NOD.c3c4 mice, NOD.ABD mice do not develop anti-nuclear or anti-Smith autoantibodies; however, NOD.ABD mice do develop the antipyruvate dehydrogenase Abs typical of human PBC. The NOD.ABD strain is a model of immune dysregulation affecting two organ systems, most likely by mechanisms that do not completely coincide.


Assuntos
Ductos Biliares/imunologia , Ductos Biliares/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Cirrose Hepática Biliar/imunologia , Cirrose Hepática Biliar/patologia , Transferência Adotiva , Animais , Cruzamentos Genéticos , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Feminino , Humanos , Células K562 , Cirrose Hepática Biliar/genética , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia
5.
J Immunol ; 183(3): 1533-41, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19592648

RESUMO

In humans and NOD mice, defects in immune tolerance result in the spontaneous development of type-1-diabetes. Recent studies have ascribed a breakdown in tolerance to dysfunction in regulatory T cells that is secondary to reduced IL-2 production by T cells having the NOD diabetes susceptibility region insulin-dependent diabetes 3 (Idd3). In this study, we demonstrate a peripheral tolerance defect in the dendritic cells of NOD mice that is independent of regulatory T cells. NOD CD8 T cells specific for islet Ags fail to undergo deletion in the pancreatic lymph nodes. Deletion was promoted by expression of the protective alleles of both Idd3 (Il2) and Idd5 in dendritic cells. We further identify a second tolerance defect that involves endogenous CD4 T cell expression of the disease-promoting NOD alleles of these genetic regions. Pervasive insulitis can be reduced by expression of the Idd3 and Idd5 protective alleles by either the Ag-presenting cell or lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Diabetes Mellitus/genética , Tolerância a Antígenos Próprios/imunologia , Alelos , Animais , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos , Deleção Clonal , Células Dendríticas/patologia , Expressão Gênica , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD
6.
J Immunol ; 183(8): 5146-57, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19783679

RESUMO

Idd5.1 regulates T1D susceptibility in nonobese diabetic (NOD) mice and has two notable candidate genes, Ctla4 and Icos. Reduced expression of one of the four CTLA-4 isoforms, ligand-independent CTLA-4 (liCTLA-4), which inhibits in vitro T cell activation and cytokine production similarly to full-length CTLA-4 (flCTLA-4), has been hypothesized to increase type 1 diabetes (T1D) susceptibility. However, further support of this hypothesis is required since the Idd5.1 haplotypes of the diabetes-susceptible NOD and the resistant B10 strains differ throughout Ctla4 and Icos. Using haplotype analysis and the generation of novel Idd5.1-congenic strains that differ at the disease-associated Ctla4 exon 2 single-nucleotide polymorphism, we demonstrate that increased expression of liCTLA-4 correlates with reduced T1D susceptibility. To directly assess the ability of liCTLA-4 to modulate T1D, we generated liCTLA-4-transgenic NOD mice and compared their diabetes susceptibility to nontransgenic littermates. NOD liCTLA-4-transgenic mice were protected from T1D to the same extent as NOD.B10 Idd5.1-congenic mice, demonstrating that increased liCTLA-4 expression alone can account for disease protection. To further investigate the in vivo function of liCTLA-4, specifically whether liCTLA-4 can functionally replace flCTLA-4 in vivo, we expressed the liCTLA-4 transgene in CTLA-4(-/-) B6 mice. CTLA-4(-/-) mice expressing liCTLA-4 accumulated fewer activated effector/memory CD4(+) T cells than CTLA-4(-/-) mice and the transgenic mice were partially rescued from the multiorgan inflammation and early lethality caused by the disruption of Ctla4. These results suggest that liCTLA-4 can partially replace some functions of flCTLA-4 in vivo and that this isoform evolved to reinforce the function of flCTLA-4.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Diabetes Mellitus Tipo 1/genética , Linfócitos T/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Autoimunidade/imunologia , Antígeno CTLA-4 , Diabetes Mellitus Tipo 1/imunologia , Predisposição Genética para Doença , Haplótipos/genética , Haplótipos/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Linfócitos T/metabolismo
7.
Wellcome Open Res ; 2: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815218

RESUMO

BACKGROUND: The infection of a participant with norovirus during the adaptive study of interleukin-2 dose on regulatory T cells in type 1 diabetes (DILT1D) allowed a detailed insight into the cellular and cytokine immune responses to this prevalent gastrointestinal pathogen. METHODS: Serial blood, serum and peripheral blood mononuclear cell (PBMC) samples were collected pre-, and post-development of the infection. To differentiate between the immune response to norovirus and to control for the administration of a single dose of aldesleukin (recombinant interleukin-2, rIL-2) alone, samples from five non-infected participants administered similar doses were analysed in parallel. RESULTS: Norovirus infection was self-limited and resolved within 24 hours, with the subsequent development of anti-norovirus antibodies. Serum pro- and anti-inflammatory cytokine levels, including IL-10, peaked during the symptomatic period of infection, coincident with increased frequencies of monocytes and neutrophils. At the same time, the frequency of regulatory CD4 + T cell (Treg), effector T cell (Teff) CD4 + and CD8 + subsets were dynamically reduced, rebounding to baseline levels or above at the next sampling point 24 hours later.  NK cells and NKT cells transiently increased CD69 expression and classical monocytes expressed increased levels of CD40, HLA-DR and SIGLEC-1, biomarkers of an interferon response. We also observed activation and mobilisation of Teffs, where increased frequencies of CD69 + and Ki-67 + effector memory Teffs were followed by the emergence of memory CD8 + Teff expressing the mucosal tissue homing markers CD103 and ß7 integrin. Treg responses were coincident with the innate cell, Teff and cytokine response. Key Treg molecules FOXP3, CTLA-4, and CD25 were upregulated following infection, alongside an increase in frequency of Tregs with the capacity to home to tissues. CONCLUSIONS: The results illustrate the innate, adaptive and counter-regulatory immune responses to norovirus infection. Low-dose IL-2 administration induces many of the Treg responses observed during infection.

8.
BMC Genet ; 6: 9, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15720714

RESUMO

BACKGROUND: One strategy to help identify susceptibility genes for complex, multifactorial diseases is to map disease loci in a representative animal model of the disorder. The nonobese diabetic (NOD) mouse is a model for human type 1 diabetes. Linkage and congenic strain analyses have identified several NOD mouse Idd (insulin dependent diabetes) loci, which have been mapped to small chromosome intervals, for which the orthologous regions in the human genome can be identified. Here, we have conducted re-sequencing and association analysis of six orthologous genes identified in NOD Idd loci: NRAMP1/SLC11A1 (orthologous to Nramp1/Slc11a1 in Idd5.2), FRAP1 (orthologous to Frap1 in Idd9.2), 4-1BB/CD137/TNFRSF9 (orthologous to 4-1bb/Cd137/Tnrfrsf9 in Idd9.3), CD101/IGSF2 (orthologous to Cd101/Igsf2 in Idd10), B2M (orthologous to B2m in Idd13) and VAV3 (orthologous to Vav3 in Idd18). RESULTS: Re-sequencing of a total of 110 kb of DNA from 32 or 96 type 1 diabetes cases yielded 220 single nucleotide polymorphisms (SNPs). Sixty-five SNPs, including 54 informative tag SNPs, and a microsatellite were selected and genotyped in up to 1,632 type 1 diabetes families and 1,709 cases and 1,829 controls. CONCLUSION: None of the candidate regions showed evidence of association with type 1 diabetes (P values > 0.2), indicating that common variation in these key candidate genes does not play a major role in type 1 diabetes susceptibility in the European ancestry populations studied.


Assuntos
Mapeamento Cromossômico , Diabetes Mellitus Tipo 1/genética , Polimorfismo de Nucleotídeo Único , Animais , Estudos de Casos e Controles , Saúde da Família , Predisposição Genética para Doença , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fases de Leitura Aberta/genética , Polimorfismo Genético , Análise de Sequência de DNA , Regiões não Traduzidas/genética , População Branca/genética
9.
Diabetes ; 61(1): 166-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106155

RESUMO

Type 1 diabetes genes within the interleukin (IL)-2, cytotoxic T-lymphocyte--associated protein 4 (CTLA-4), and natural resistance-associated macrophage protein (NRAMP1) pathways influence development of autoimmune diabetes in humans and NOD mice. In NOD mice, when present together, protective alleles encoding IL-2, Idd3 candidate gene, CTLA-4, NRAMP1, and acetyl-coenzyme A dehydrogenase, long-chain (ACADL) (candidate genes for the Idd5.1, Idd5.2, and Idd5.3 subregions) provide nearly complete diabetes protection. To define where the protective alleles of Idd3 and the Idd5 subregions must be present to protect from diabetes and tolerize islet-specific CD8(+) T cells, SCID mice were reconstituted so that the host and lymphocytes expressed various combinations of protective and susceptibility alleles at Idd3 and Idd5. Although protective Idd3 alleles in the lymphocytes and protective Idd5 alleles in the SCID host contributed most significantly to CD8 tolerance, both were required together in both lymphocyte and nonlymphocyte cells to recapitulate the potent diabetes protection observed in intact Idd3/5 mice. We conclude that genetic regions involved in autoimmune disease are not restricted in their influence to individual cell types. Even a single protective gene product, such as IL-2, must be expressed in both the lymphocytes and dendritic cells to exert its full extent of disease protection. These studies highlight the pleiotropic effects of genes that determine autoimmune disease susceptibility.


Assuntos
Citoproteção/genética , Tolerância Imunológica/genética , Células Secretoras de Insulina/imunologia , Alelos , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Antígeno CTLA-4/genética , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Loci Gênicos , Predisposição Genética para Doença , Células Secretoras de Insulina/metabolismo , Interleucina-2/genética , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
10.
Diabetes ; 59(1): 272-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19833887

RESUMO

OBJECTIVE: The approximately 45-cM insulin-dependent diabetes 9 (Idd9) region on mouse chromosome 4 harbors several different type 1 diabetes-associated loci. Nonobese diabetic (NOD) mice congenic for the Idd9 region of C57BL/10 (B10) mice, carrying antidiabetogenic alleles in three different Idd9 subregions (Idd9.1, Idd9.2, and Idd9.3), are strongly resistant to type 1 diabetes. However, the mechanisms remain unclear. This study aimed to define mechanisms underlying the type 1 diabetes resistance afforded by B10 Idd9.1, Idd9.2, and/or Idd9.3. RESEARCH DESIGN AND METHODS: We used a reductionist approach that involves comparing the fate of a type 1 diabetes-relevant autoreactive CD8(+) T-cell population, specific for residues 206-214 of islet-specific glucose 6 phosphatase catalytic subunit-related protein (IGRP(206-214)), in noncongenic versus B10 Idd9-congenic (Idd9.1 + Idd9.2 + Idd9.3, Idd9.2 + Idd9.3, Idd9.1, Idd9.2, and Idd9.3) T-cell receptor (TCR)-transgenic (8.3) NOD mice. RESULTS: Most of the protective effect of Idd9 against 8.3-CD8(+) T-cell-enhanced type 1 diabetes was mediated by Idd9.1. Although Idd9.2 and Idd9.3 afforded some protection, the effects were small and did not enhance the greater protective effect of Idd9.1. B10 Idd9.1 afforded type 1 diabetes resistance without impairing the developmental biology or intrinsic diabetogenic potential of autoreactive CD8(+) T-cells. Studies in T- and B-cell-deficient 8.3-NOD.B10 Idd9.1 mice revealed that this antidiabetogenic effect was mediated by endogenous, nontransgenic T-cells in a B-cell-independent manner. Consistent with this, B10 Idd9.1 increased the suppressive function and antidiabetogenic activity of the FoxP3(+)CD4(+)CD25(+) T-cell subset in both TCR-transgenic and nontransgenic mice. CONCLUSIONS: A gene(s) within Idd9.1 regulates the development and function of FoxP3(+)CD4(+)CD25(+) regulatory T-cells and, in turn, the activation of CD8(+) effector T-cells in the pancreatic draining lymph nodes, without affecting their development or intrinsic diabetogenic potential.


Assuntos
Antígenos CD4/imunologia , Mapeamento Cromossômico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Fatores de Transcrição Forkhead/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD4/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/genética , Glucose-6-Fosfatase/genética , Terapia de Imunossupressão , Subunidade alfa de Receptor de Interleucina-2/genética , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos NOD/genética
11.
Diabetes ; 59(6): 1478-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20299469

RESUMO

OBJECTIVE: Multiple type 1 diabetes susceptibility genes have now been identified in both humans and mice, yet mechanistic understanding of how they impact disease pathogenesis is still minimal. We have sought to dissect the cellular basis for how the highly protective mouse Idd9 region limits the expansion of autoreactive CD8(+) T-cells, a key cell type in destruction of the islets. RESEARCH DESIGN AND METHODS: We assess the endogenous CD8(+) T-cell repertoire for reactivity to the islet antigen glucose-6-phosphatase-related protein (IGRP). Through the use of adoptively transferred T-cells, bone marrow chimeras, and reconstituted severe combined immunodeficient mice, we identify the protective cell types involved. RESULTS: IGRP-specific CD8(+) T-cells are present at low frequency in the insulitic lesions of Idd9 mice and could not be recalled in the periphery by viral expansion. We show that Idd9 genes act extrinsically to the CD8(+) T-cell to prevent the massive expansion of pathogenic effectors near the time of disease onset that occurs in NOD mice. The subregions Idd9.2 and Idd9.3 mediated this effect. Interestingly, the Idd9.1 region, which provides significant protection from disease, did not prevent the expansion of autoreactive CD8(+) T-cells. Expression of Idd9 genes was required by both CD4(+) T-cells and a nonlymphoid cell to induce optimal tolerance. CONCLUSIONS: Idd9 protective alleles are associated with reduced expansion of IGRP-specific CD8(+) T-cells. Intrinsic expression of protective Idd9 alleles in CD4(+) T-cells and nonlymphoid cells is required to achieve an optimal level of tolerance. Protective alleles in the Idd9.2 congenic subregion are required for the maximal reduction of islet-specific CD8(+) T-cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Predisposição Genética para Doença , Ilhotas Pancreáticas/imunologia , Animais , Células da Medula Óssea/citologia , Citometria de Fluxo , Regulação da Expressão Gênica , Glucose-6-Fosfatase/genética , Humanos , Ilhotas Pancreáticas/fisiopatologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas/genética
12.
Biochem Soc Trans ; 36(Pt 3): 312-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18481948

RESUMO

Variants within the IL-2 (interleukin 2) and CD25 genes are associated with T1DM (Type 1 diabetes mellitus) in mice and humans respectively. Both gene products are essential for optimal immune tolerance and a partial failure to tolerize is linked to the autoimmune responses to insulin and other beta-cell proteins that precede T1DM onset. Gene variants that contribute to common disease susceptibility often alter gene expression only modestly. Small expression changes can be technically challenging to measure robustly, especially since biological variation usually contributes negatively to this goal. The present review focuses on allele-specific expression assays that can be used to quantify genotype-determined expression differences such as those observed for IL-2, where the susceptibility allele is transcribed 2-fold less than the resistance allele.


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Variação Genética , Interleucina-2/genética , Alelos , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Especificidade da Espécie
13.
Nature ; 423(6939): 506-11, 2003 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-12724780

RESUMO

Genes and mechanisms involved in common complex diseases, such as the autoimmune disorders that affect approximately 5% of the population, remain obscure. Here we identify polymorphisms of the cytotoxic T lymphocyte antigen 4 gene (CTLA4)--which encodes a vital negative regulatory molecule of the immune system--as candidates for primary determinants of risk of the common autoimmune disorders Graves' disease, autoimmune hypothyroidism and type 1 diabetes. In humans, disease susceptibility was mapped to a non-coding 6.1 kb 3' region of CTLA4, the common allelic variation of which was correlated with lower messenger RNA levels of the soluble alternative splice form of CTLA4. In the mouse model of type 1 diabetes, susceptibility was also associated with variation in CTLA-4 gene splicing with reduced production of a splice form encoding a molecule lacking the CD80/CD86 ligand-binding domain. Genetic mapping of variants conferring a small disease risk can identify pathways in complex disorders, as exemplified by our discovery of inherited, quantitative alterations of CTLA4 contributing to autoimmune tissue destruction.


Assuntos
Antígenos de Diferenciação/genética , Doenças Autoimunes/genética , Predisposição Genética para Doença/genética , Imunoconjugados , Abatacepte , Processamento Alternativo/genética , Animais , Antígenos CD , Sequência de Bases , Antígeno CTLA-4 , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Genótipo , Doença de Graves/genética , Humanos , Hipotireoidismo/genética , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa