Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 265: 115516, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37757626

RESUMO

Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of plasticizer di-2-ethylhexyl phthalic acid (DEHP), and there is limited information available on the effects of MEHP on neurotoxicity. This study aims to examine the neurotoxicity of MEHP and preliminarily explore its potential molecular mechanisms. We found that MEHP impeded the growth of zebrafish embryos and the neurodevelopmental-related gene expression at environmentally relevant concentrations. MEHP exposure also induces oxidative stress response and brain cell apoptosis accompanied by a decrease in acetylcholinesterase (AChE) activity in zebrafish larvae. RNA-Seq and bioinformatics analysis showed that MEHP treatment altered the nervous system, neurogenic diseases, and visual perception pathways. The locomotor activity in dark-to-light cycles and phototaxis test confirmed the abnormal neural behavior of zebrafish larvae. Besides, the immune system has produced a large number of differentially expressed genes related to neural regulation. Inflammatory factor IL1ß and IL-17 signaling pathways highly respond to MEHP, indicating that inflammation caused by immune system imbalance is a potential mechanism of MEHP-induced neurotoxicity. This study expands the understanding of the toxicity and molecular mechanisms of MEHP, providing a new perspective for in-depth neurotoxicity exploration of similar compounds.

2.
Toxics ; 12(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38393245

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer commonly used in various technological applications. However, its impact on aquatic ecosystems remains largely unexplored. In this study, we investigated the toxicity effects of PEDOT:PSS on zebrafish. We first determined the lethal concentration (LC50) of PEDOT:PSS in zebrafish and then exposed AB-type zebrafish embryos to different concentrations of PEDOT:PSS for 120 h. Our investigation elucidated the toxicity effects of zebrafish development, including morphological assessments, heart rate measurements, behavioral analysis, transcriptome profiling, and histopathological analysis. We discovered that PEDOT:PSS exhibited detrimental effects on the early developmental stages of zebrafish, exacerbating the oxidative stress level, suppressing zebrafish activity, impairing cardiac development, and causing intestinal cell damage. This study adds a new dimension to the developmental toxicity of PEDOT:PSS in zebrafish. Our findings contribute to our understanding of the ecological repercussions of PEDOT:PSS and highlight the importance of responsible development and application of novel materials in our rapidly evolving technological landscape.

3.
Aquat Toxicol ; 261: 106614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390778

RESUMO

Antibiotics, due to their stability and persistence in the environment, can have chronic impacts on various ecosystems and organisms. However, the molecular mechanisms underlying antibiotic toxicity at environmental concentrations, particularly the neurotoxic effects of sulfonamides (SAs), remain poorly understood. In this study, we assessed the neurotoxicity of six SAs including the sulfadiazine (SD), sulfathiazole (ST), sulfamethoxazole (SMX), sulfisoxazole (SIZ), sulfapyridine (SPD), and sulfadimethoxine (SDM) by exposing zebrafish to environmentally relevant concentrations (ERCs). The SAs exhibited concentration-dependent effects on zebrafish behavior, including spontaneous movement, heartbeat, survival rate, and body metrics, ultimately leading to depressive-like symptoms and sublethal toxicity during early life stages. Notably, even the lowest SA concentration (0.05 µg/L) induced neurotoxicity and behavioral impairment in zebrafish. We observed a dose-dependent increase in melancholy behavior as indicated by increased resting time and decreased motor activity in zebrafish larvae. Following exposure to SAs from 4 to 120 h post-fertilization (hpf), key genes involved in folate synthesis [sepiapterin reductase a (spra), phenylalanine hydroxylase (pah), tyrosine hydroxylase (th), and tryptophan hydroxylase 1 (tryptophan 5-monooxygenase) a tryptophan hydroxylase (tph1a)] and carbonic anhydrase (CA) metabolism [carbonic anhydrase II (ca2), carbonic anhydrase IV a (ca4a), carbonic anhydrase VII (ca7), and carbonic anhydrase XIV (ca14)] were significantly downregulated or inhibited at different concentrations. Our findings demonstrate that acute exposure to six SAs at environmentally relevant concentrations induces developmental and neurotoxic effects in zebrafish, impacting folate synthesis pathways and CA metabolism. These results provide valuable insights into the potential role of antibiotics in depressive disorders and neuroregulatory pathways.


Assuntos
Anidrases Carbônicas , Poluentes Químicos da Água , Animais , Sulfonamidas/toxicidade , Peixe-Zebra , Triptofano Hidroxilase/farmacologia , Ecossistema , Poluentes Químicos da Água/toxicidade , Sulfanilamida/farmacologia , Antibacterianos/farmacologia , Larva , Ácido Fólico/farmacologia
4.
Phytomedicine ; 99: 153977, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35305353

RESUMO

BACKGROUND: Human enterovirus 68 (EV68) is a primary etiological agent for respiratory illnesses, while no effective drug has yet used in clinics largely because the pathogenesis of EV68 is not clear. DNA damage response (DDR) responds to cellular DNA breaks and is also involved in viral replication. Three DDR pathways includes ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK). Natural products proved to be an excellent source for the discovery and isolation of novel antivirals. Among them, tanshinone IIA, resveratrol, silibinin, rutin and quercetin are reported to target DDR, therefore their roles in anti-EV68 are investigated in this study. PURPOSE: This study investigated the anti-EV68 ability of various natural compounds related to DDR. STUDY DESIGN AND METHODS: The methods include cell counting, flow cytometry, western blot, Immunofluorescence staining, comet assays, quantitative real-time RT PCR and short interfering RNAs (siRNAs) for analysis of cell number, cell cycle, protein expression, protein location, DNA damage, mRNA level and knock down target gene, respectively. RESULTS: EV68 infection induced DDR. Down-regulation or inhibition of ATM or DNA-PK lowered DDR in EV68-infected cells and mitigated viral protein expression, however, down-regulation or inhibition of ATR unexpectedly up-regulated DDR, and promoted viral protein expression. Meanwhile tanshinone IIA, resveratrol, and silibinin inhibited ATM and/or DNA-PK activation and decreased viral proliferation, while rutin and quercetin inhibited ATR activation and promoted viral production. The role of them in ATM, DNA-PK and ATR activation was consistent with previous reports. CONCLUSION: Tanshinone IIA, resveratrol and silibinin inhibited EV68 proliferation through inhibiting ATM and/or DNA-PK activation, and they were effective anti-EV68 candidates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa