Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 437(7060): 845-50, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16208362

RESUMO

The final chapter in the long-standing mystery of the gamma-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.

2.
Nature ; 437(7060): 851-4, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16208363

RESUMO

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

3.
Science ; 268(5217): 1598-601, 1995 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-17754612

RESUMO

Röntgensatellit (ROSAT) observations made shortly before and during the collision of comet Shoemaker-Levy 9 with Jupiter show enhanced x-ray emissions from the planet's northern high latitudes. These emissions, which occur at System III longitudes where intensity enhancements have previously been observed in Jupiter's ultraviolet aurora, appear to be associated with the comet fragment impacts in Jupiter's southern hemisphere and may represent brightenings of the jovian x-ray aurora caused either by the fragment impacts themselves or by the passage of the fragments and associated dust clouds through Jupiter's inner magnetosphere.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa