Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Gac Med Mex ; 159(6): 532-542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38386867

RESUMO

BACKGROUND: It is estimated that environmental risk factors (ERF) were responsible for nine million deaths worldwide in 2019. OBJECTIVE: Using data from the Global Burden of Disease study, indicators of health loss associated with exposure to ERF in Mexico were analyzed. MATERIAL AND METHODS: Absolute numbers and population percentages of deaths and disability-adjusted life years (DALY) lost attributed to selected ERFs were analyzed at the national and state level and by sex, as well as age-standardized trends from 1990 to 2021. RESULTS: In 2021, ambient particulate matter pollution showed the highest mortality and DALYs lost attributed to selected ERFs (42.2 and 38.1% respectively), followed by lead exposure (20.6 and 13.4%) and low temperature (19.8 and 12.3%). Both indicators have decreased for all selected ERAs by different magnitudes between 1991 and 2021, except for high temperature. CONCLUSIONS: Despite decreases in the last 32 years, outdoor environment particulate matter showed the highest mortality and DALYs lost, followed by lead exposure. It is essential to strengthen air quality and lead exposure policies in Mexico.


ANTECEDENTES: Se estima que los factores de riesgo ambientales (FRA) fueron responsables en 2019 de nueve millones de muertes en el mundo. OBJETIVO: A partir de datos del estudio Global Burden of Disease, se analizaron indicadores de pérdida de salud asociada a la exposición a FRA en México. MATERIAL Y MÉTODOS: Se analizaron números absolutos y porcentajes poblacionales de muertes y años de vida saludable (AVISA) perdidos según sexo atribuidos a FRA seleccionados en los ámbitos nacional y estatal, así como las tendencias estandarizadas por edad de 1990 a 2021. RESULTADOS: En 2021, la contaminación por material particulado en ambiente exterior mostró la mayor mortalidad y AVISA perdidos por los FRA seleccionados (42.2 y 38.1 %, respectivamente), seguida de la exposición a plomo (20.6 y 13.4 %) y temperatura baja (19.8 y 12.3 %). Ambos indicadores han disminuido en todos los FRA seleccionados, en magnitudes diferentes entre 1991 y 2021, excepto la temperatura alta. CONCLUSIONES: A pesar de las disminuciones en los últimos 32 años, el material particulado en ambiente exterior mostró la mayor mortalidad y AVISA perdidos, seguido de la exposición a plomo. Es fundamental fortalecer las políticas de calidad del aire y exposición a plomo en México.


Assuntos
Emergências , Chumbo , Humanos , México/epidemiologia , Efeitos Psicossociais da Doença , Fatores de Risco
2.
N Engl J Med ; 381(8): 705-715, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31433918

RESUMO

BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 µm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 µm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. RESULTS: On average, an increase of 10 µg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.).


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/análise , Mortalidade , Material Particulado/efeitos adversos , Poluição do Ar/análise , Doenças Cardiovasculares/mortalidade , Causas de Morte , Exposição Ambiental/efeitos adversos , Exposição Ambiental/legislação & jurisprudência , Saúde Global , Humanos , Tamanho da Partícula , Material Particulado/análise , Doenças Respiratórias/mortalidade , Risco
3.
Epidemiology ; 33(2): 167-175, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907973

RESUMO

BACKGROUND: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality. METHODS: We applied a 2-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators. RESULTS: We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95% confidence interval [95% CI] = 1.0030, 1.0097) to 1.0102 (95% CI = 1.0070, 1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95% CI = 1.0067, 1.0133) to 1.0037 (95% CI = 0.9998, 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. CONCLUSIONS: These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Cidades/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Humanos , Mortalidade , Nitratos/efeitos adversos , Material Particulado/análise , Material Particulado/toxicidade
4.
Environ Res ; 207: 112600, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990608

RESUMO

Available data on the acute cardiovascular effect of ambient air pollution (AAP) in Latin America is limited considering that over 80% of its 1 billion inhabitants live in urban settlements with poor air quality. The study aim was to evaluate the association between Cardiovascular Emergency Department Visits (CEDVs) and AAP in Mexico City from 2016 to 2019 using generalized additive models with distributed lags to examine the percentage change of CEDVs and a backward approach of time-series model to calculate attributable fractions. A total of 48,891 CEDVs were recorded in a period of 1019 days. We estimated a significant percentage increase for each 10 µg/m3 of PM10 at Lag0-5 (2.8%, 95%CI 0.6-5.0), PM2.5 at Lag0-6 (3.7%, 95%CI 0.1-7.6), O3 at Lag0-5 (1.1%, 95%CI 0.2-2.0), NO2 at Lag0-4 (2.5%, 95%CI 0.3-4.7) and for each 1 mg/m3 of CO at Lag0 (6.6%, 95%CI 0.3-13.2). Overall, 10.3% of CEDVs in Mexico City may be related to PM10 exposure, 9.5% to PM2.5, 10.3% to O3, 11% to NO2 and 5.7% to CO. AAP significantly increase cardiovascular morbidity impacting on emergency medical services.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , China , Serviço Hospitalar de Emergência , Exposição Ambiental/análise , México/epidemiologia , Material Particulado/análise , Material Particulado/toxicidade
5.
Environ Res ; 180: 108868, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711659

RESUMO

BACKGROUND: Respiratory diseases are a major component of morbidity in children and their symptoms may be spatially and temporally exacerbated by exposure gradients of fine particulate matter (PM2.5) in large polluted urban areas, like the Mexico City Metropolitan Area (MCMA). OBJECTIVES: To analyze the association between satellite-derived and interpolated PM2.5 estimates with children's (≤9 years old) acute respiratory symptoms (ARS) in two probabilistic samples representing the MCMA. METHODS: We obtained ARS data from the 2006 and 2012 National Surveys for Health and Nutrition (ENSaNut). Two week average exposure to PM2.5 was assessed for each household with spatial estimates from a hybrid model with satellite measurements of aerosol optical depth (AOD-PM2.5) and also with interpolated PM2.5 measurements from ground stations, from the Mexico City monitoring network (MNW-PM2.5). We used survey-adjusted logistic regressions to analyze the association between PM2.5 estimates and ARS reported on children. RESULTS: A total of 1,005 and 1,233 children were surveyed in 2006 and 2012 representing 3.1 and 3.5 million children, respectively. For the same years and over the periods of study, the estimated prevalence of ARS decreased from 49.4% (95% CI: 44.9,53.9%) to 37.8% (95% CI: 34,41.7%). AOD-PM2.5 and MNW-PM2.5 estimates were associated with significantly higher reports of ARS in children 0-4 years old [OR2006 = 1.29 (95% (CI): 0.99,1.68) and OR2006 = 1.24 (95% CI: 1.08,1.42), respectively]. We observed positive non-significant associations in 2012 in both age groups and in 2006 for children 5-9 years old. No statistically significant differences in health effect estimates of PM2.5 were found comparing AOD-PM2.5 or MNW-PM2.5 for exposure assessment. CONCLUSIONS: Our findings suggest that PM2.5 is a risk factor for the prevalence of ARS in children and expand the growing evidence of the utility of new satellite AOD-based methods for estimating health effects from acute exposure to PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Doenças Respiratórias , Doença Aguda , Aerossóis , Criança , Pré-Escolar , Cidades , Monitoramento Ambiental , Humanos , Lactente , Recém-Nascido , México , Material Particulado/toxicidade , Doenças Respiratórias/etiologia , Inquéritos e Questionários
6.
Salud Publica Mex ; 62(5): 468-476, 2020.
Artigo em Espanhol | MEDLINE | ID: mdl-32668510

RESUMO

OBJECTIVE: To estimate the mortality risk of fine (PM2.5) and coarse (PM2.5-10) particles in the Metropolitan Area of Mon-terrey (MAM). MATERIALS AND METHODS: A retrospective ecological time-series analysis (2000-2014) was conducted using total and specific causes of mortality, and daily mean PM2.5 and PM2.5-10. Generalized additive distributed lag models controlling for trend, seasonality, day of the week, meteoro-logical conditions and gaseous pollutants. RESULTS: Mean (SD) PM2.5 and PM2.5-10 concentrations were 26.59 µg/m3(11.06 µg/m3) and 48.83 µg/m3 (21.15 µg/m3). An increase of 10 µg/m3 of PM2.5 (lag 0) was associated with 11.16% (95%CI:1.03-21.39) increased risk of respiratory mortality in children <=5 years old and 6.6% (95%CI 3.31-9.37) increased risk of pneumonia-influenza in adults >=65 years old. The risk of mortality associated with the concentration of coarse particles was lower. CONCLUSIONS: Positive and significant associations were observed between exposure to particulate matter and daily mortality in the MAM ́s population.


OBJETIVO: Estimar el riesgo de mortalidad asociado con la exposición a partículas finas (PM2.5) y gruesas (PM2.5-10) en la Zona Metropolitana de Monterrey (ZMM). MATERIAL Y MÉTODOS: Estudio ecológico con análisis retrospectivo de series de tiempo (2004-2014) de mortalidad total y especí-fica diaria, y promedio de PM2.5 y PM2.5-10. Modelos aditivos generalizados Poisson con rezagos distribuidos ajustados por tendencia, estacionalidad, día de la semana, condiciones meteorológicas y contaminantes gaseosos. RESULTADOS: 83 (21.15) µg/m3. Cada 10 µg/m3 de aumento de PM2.5 (lag 0) incrementó el riesgo de mortalidad respiratoria en menores de cinco años 11.16% (IC95% 1.03-21.39) y de neumonía e influenza en mayores de 65 años 6.60% (IC95% 3.91-9.37). El riesgo de mortalidad asociado con las PM2.5-10 fue meno. CONCLUSIONES: Se observaron asociaciones positivas y significativas entre exposición a material particulado y la mortalidad diaria en población de la ZMM.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mortalidade , Adulto , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Pré-Escolar , Exposição Ambiental/efeitos adversos , Humanos , México/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Estudos Retrospectivos
7.
Salud Publica Mex ; 62(5): 582-589, 2020.
Artigo em Espanhol | MEDLINE | ID: mdl-32526820

RESUMO

OBJECTIVE: To analyze the evidence on the relationship between air pollution and an increased risk of morbidity and mortality from Covid-19. MATERIALS AND METHODS: An adaptation of the Cochrane rapid review methodology was used. The search was performed in PubMed and MedRxiv and was limited until April 28 and 26, respectively. The titles and abstracts were reviewed by five researchers who, in turn, reviewed the full texts of the final selection. RESULTS: 450 manuscripts were found, 15 met the inclusion criteria. The evidence reports that the incidence and risk of morbidity and mortality from Covid-19 increase with chronic and acute exposure to air pollution, particularly to particulate matter (PM2.5, P M10) and nitrogen dioxide. CONCLUSIONS: More studies are required especially in Latin American cities. It is necessary to strengthen the recommendations in cities with higher levels of pollutants and to reduce their emissions.


OBJETIVO: Analizar la evidencia sobre la relación entre la contaminación del aire y un riesgo mayor de morbimor-talidad por Covid-19. MATERIAL Y MÉTODOS: Se utilizó una adaptación de la metodología de revisiones rápidas de Cochrane. La búsqueda se realizó en PubMed y MedRxiv y se limitó hasta el 28 y 26 de abril, respectivamente. Los títu-los y resúmenes fueron revisados por cinco investigadores que, a su vez, revisaron los textos completos de la selección final. RESULTADOS: Se encontraron 450 manuscritos, 15 cumplieron los criterios de inclusión. La evidencia encon-trada reporta que la incidencia y el riesgo de morbilidad y mortalidad por Covid-19 se incrementan con la exposición crónica y aguda a la contaminación del aire, particularmente a material particulado (PM2.5, P M10) y dióxido de nitrógeno. CONCLUSIONES: Se requieren más estudios especialmente en ciudades latinoamericanas. Es necesario fortalecer las recomendaciones en las ciudades con mayores niveles de contaminantes y reducir sus emisiones.


Assuntos
Poluição do Ar/efeitos adversos , Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Poluentes Atmosféricos/efeitos adversos , COVID-19 , Cidades , Infecções por Coronavirus/etiologia , Suscetibilidade a Doenças , Exposição Ambiental , Monitoramento Ambiental , Humanos , Incidência , América Latina/epidemiologia , Conceitos Meteorológicos , Material Particulado/efeitos adversos , Pneumonia Viral/etiologia , Sistema Respiratório/fisiopatologia , Sistema Respiratório/virologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/etiologia , Síndrome Respiratória Aguda Grave/mortalidade , Saúde da População Urbana
8.
Salud Publica Mex ; 63(1, ene-feb): 120-125, 2020 Dec 22.
Artigo em Espanhol | MEDLINE | ID: mdl-33984210

RESUMO

Objetivo. Resumir y analizar la evidencia de la asociación entre Covid-19 y factores climáticos. Material y métodos. Se utilizó la metodología de revisiones rápidas de Cochrane. Se buscaron artículos publicados del 1 de enero al 27 de abril de 2020 en una base de datos académica y preprints. Los títulos y resúmenes fueron revisados por dos investigadores y los textos completos por cinco investigadores. Resultados. De 354 artículos identificados, 26 cumplieron los criterios de elegibilidad establecidos. De éstos, 20 observaron una asociación inversa. Al evaluar su calidad, nueve calificaron con validez moderada, porque si bien ajustaron por covariables en el análisis, son estudios ecológicos. Conclusiones. A pesar de la homogeneidad de resultados, los factores climáticos explican un porcentaje pequeño de la variación de Covid-19. Son necesarios estudios con periodo de análisis más largo que capten tendencia y estacionalidad e incluyan factores de riesgo individuales.


Assuntos
COVID-19/mortalidade , Umidade , Temperatura , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Estudos Observacionais como Assunto , Estudos Retrospectivos
9.
Int J Biometeorol ; 63(12): 1641-1650, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31407098

RESUMO

Multi-city studies assessing the association between acute exposure to temperature and mortality in Latin American are limited. To analyze the short-term effect of changes in temperature (increase and decrease) on daily non-external and cardiovascular mortality from 1998 to 2014, in people 65 years old and over living in 10 metropolitan areas of Mexico. Analyses were performed through Poisson regression models with distributed lag non-linear models. Statistical comparison of minimum mortality temperature (MMT) and city-specific cutoffs of 24-h temperature mean values (5th/95th and 1st/99th percentiles) were used to obtain the mortality relative Risk (RR) for cold/hot and extreme cold/extreme hot, respectively, for the same day and lags of 0-3, 0-7, and 0-21 days. A meta-analysis was conducted to synthesize the estimates (RRpooled). Significant non-linear associations of temperature-mortality relation were found in U or inverted J shape. The best predictors of mortality associations with cold and heat were daily temperatures at lag 0-7 and lag 0-3, respectively. RRpooled of non-external causes was 6.3% (95%CI 2.7, 10.0) for cold and 10.2% (95%CI 4.4, 16.2) for hot temperatures. The RRpooled for cardiovascular mortality was 7.1% (95%CI 0.01, 14.7) for cold and 7.1% (95%CI 0.6, 14.0) for hot temperatures. Results suggest that, starting from the MMT, the changes in temperature are associated with an increased risk of non-external and specific causes of mortality in elderly people. Generally, heat effects on non-external and specific causes of mortality occur immediately, while cold effects occur within a few days and last longer.


Assuntos
Doenças Cardiovasculares , Temperatura Baixa , Idoso , Cidades , Temperatura Alta , Humanos , México , Mortalidade , Dinâmica não Linear , Temperatura
10.
Salud Publica Mex ; 59(1): 41-52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423109

RESUMO

OBJECTIVE:: To assess links between the social variables and longer-term El Niño-Southern Oscillation (ENSO) related weather conditions as they relate to the week-to-week changes in dengue incidence at a regional level. MATERIALS AND METHODS:: We collected data from 10 municipalities of the Olmeca region in México, over a 10 year period (January 1995 to December 2005). Negative binomial models with distributed lags were adjusted to look for associations between changes in the weekly incidence rate of dengue fever and climate variability. RESULTS:: Our results show that it takes approximately six weeks for sea surface temperatures (SST -34) to affect dengue incidence adjusted by weather and social variables. CONCLUSION:: Such models could be used as early as two months in advance to provide information to decision makers about potential epidemics. Elucidating the effect of climatic variability and social variables, could assist in the development of accurate early warning systems for epidemics like dengue, Chikungunya and Zika.


Assuntos
Dengue/epidemiologia , Fatores Sociológicos , Tempo (Meteorologia) , Humanos , Incidência , México/epidemiologia , Saúde da População Urbana
11.
Salud Publica Mex ; 56(4): 371-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25604177

RESUMO

OBJECTIVE: To evaluate the modification effect of socioeconomic status (SES) on the association between acute exposure to particulate matter less than 10 microns in aerodynamic diameter (PM10) and mortality in Bogota, Colombia. MATERIALS AND METHODS: A time-series ecological study was conducted (1998-2006). The localities of the cities were stratified using principal components analysis, creating three levels of aggregation that allowed for the evaluation of the impact of SES on the relationship between mortality and air pollution. RESULTS: For all ages, the change in the mortality risk for all causes was 0.76% (95%CI 0.27-1.26) for SES I (low), 0.58% (95%CI 0.16-1.00) for SES II (mid) and -0.29% (95%CI -1.16-0.57) for SES III (high) per 10µg/m³ increment in the daily average of PM10 on day of death. CONCLUSIONS: The results suggest that SES significantly modifies the effect of environmental exposure to PM10 on mortality from all causes and respiratory causes.


Assuntos
Poluição do Ar/efeitos adversos , Mortalidade , Classe Social , Adulto , Idoso , Poluentes Atmosféricos/efeitos adversos , Causas de Morte , Colômbia/epidemiologia , Feminino , Humanos , Masculino , Conceitos Meteorológicos , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/efeitos adversos , Doenças Respiratórias/mortalidade , Estudos Retrospectivos , Fatores de Tempo , Saúde da População Urbana , População Urbana/estatística & dados numéricos , Reforma Urbana
12.
Salud Publica Mex ; 56(4): 363-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25604176

RESUMO

OBJECTIVE: To analyze the association between daily mortality from different causes and acute exposure to particulate matter less than 10 microns in aerodynamic diameter (PM10), in Bogota, Colombia. MATERIALS AND METHODS: A time-series ecological study was conducted from 1998 to 2006. The association between mortality (due to different causes) and exposure was analyzed using single and distributed lag models and adjusting for potential confounders. RESULTS: For all ages, the cumulative effect of acute mortality from all causes and respiratory causes increased 0.71% (95%CI 0.46-0.96) and 1.43% (95%CI 0.85-2.00), respectively, per 10µg/m³ increment in daily average PM10 with a lag of three days before death. Cumulative effect of mortality from cardiovascular causes was -0.03% (95%CI -0.49-0.44%) with the same lag. CONCLUSIONS: The results suggest an association between an increase in PM10 concentrations and acute mortality from all causes and respiratory causes.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Mortalidade , Material Particulado/efeitos adversos , Adulto , Distribuição por Idade , Idoso , Doenças Cardiovasculares/mortalidade , Causas de Morte , Colômbia/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Doenças Respiratórias/mortalidade , Estudos Retrospectivos , Fatores de Tempo , Saúde da População Urbana , População Urbana/estatística & dados numéricos
13.
Int J Public Health ; 69: 1606909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882560

RESUMO

Objectives: This study aims to estimate the short-term preventable mortality and associated economic costs of complying with the World Health Organization (WHO) air quality guidelines (AQGs) limit values for PM10 and PM2.5 in nine major Latin American cities. Methods: We estimated city-specific PM-mortality associations using time-series regression models and calculated the attributable mortality fraction. Next, we used the value of statistical life to calculate the economic benefits of complying with the WHO AQGs limit values. Results: In most cities, PM concentrations exceeded the WHO AQGs limit values more than 90% of the days. PM10 was found to be associated with an average excess mortality of 1.88% with concentrations above WHO AQGs limit values, while for PM2.5 it was 1.05%. The associated annual economic costs varied widely, between US$ 19.5 million to 3,386.9 million for PM10, and US$ 196.3 million to 2,209.6 million for PM2.5. Conclusion: Our findings suggest that there is an urgent need for policymakers to develop interventions to achieve sustainable air quality improvements in Latin America. Complying with the WHO AQGs limit values for PM10 and PM2.5 in Latin American cities would substantially benefits for urban populations.


Assuntos
Poluição do Ar , Cidades , Material Particulado , Organização Mundial da Saúde , Material Particulado/análise , Material Particulado/economia , Humanos , América Latina , Poluição do Ar/economia , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/economia , Mortalidade , Exposição Ambiental/prevenção & controle , Exposição Ambiental/economia
14.
Environ Epidemiol ; 8(6): e335, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39399733

RESUMO

Background: We quantify the mortality burden and economic loss attributable to nonoptimal temperatures for cold and heat in the Central and South American countries in the Multi-City Multi-Country (MCC) Collaborative Research Network. Methods: We collected data for 66 locations from 13 countries in Central and South America to estimate location-specific temperature-mortality associations using time-series regression with distributed lag nonlinear models. We calculated the attributable deaths for cold and heat as the 2.5th and 97.5th temperature percentiles, above and below the minimum mortality temperature, and used the value of a life year to estimate the economic loss of delayed deaths. Results: The mortality impact of cold varied widely by country, from 9.64% in Uruguay to 0.22% in Costa Rica. The heat-attributable fraction for mortality ranged from 1.41% in Paraguay to 0.01% in Ecuador. Locations in arid and temperate climatic zones showed higher cold-related mortality (5.10% and 5.29%, respectively) than those in tropical climates (1.71%). Arid and temperate climatic zones saw lower heat-attributable fractions (0.69% and 0.58%) than arid climatic zones (0.92%). Exposure to cold led to an annual economic loss of $0.6 million in Costa Rica to $472.2 million in Argentina. In comparison, heat resulted in economic losses of $0.05 million in Ecuador to $90.6 million in Brazil. Conclusion: Most of the mortality burden for Central and South American countries is caused by cold compared to heat, generating annual economic losses of $2.1 billion and $290.7 million, respectively. Public health policies and adaptation measures in the region should account for the health effects associated with nonoptimal temperatures.

15.
Salud Publica Mex ; 55(2): 170-8, 2013 Apr.
Artigo em Espanhol | MEDLINE | ID: mdl-23546408

RESUMO

OBJECTIVE: To evaluate the vulnerability associated with the occurrence of dengue in two villages of Morelos, Mexico from 2006 to 2009. MATERIALS AND METHODS. A survey on knowledge, risk perception, prevention practices and water use was applied in two villages of Morelos. Using a principal component analysis, an index of local vulnerability to dengue (IVL) was constructed. The association of IVL with the disease at home was assessed using a Chi-square test. RESULTS: The IVL included five components explaining 63% of the variance and was classified in three categories: low, medium and high. There was a significant association between increased vulnerability and prevalence of reported cases of dengue in Temixco and Tlaquiltenango. CONCLUSION: The study of vulnerability to dengue allows us to identify local needs in the field of health promotion.


Assuntos
Dengue/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Estudos Transversais , Suscetibilidade a Doenças/epidemiologia , Feminino , Humanos , Masculino , México , Fatores de Risco
16.
Environ Int ; 174: 107825, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934570

RESUMO

BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Exposição Ambiental , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Doenças Cardiovasculares/mortalidade , Cidades/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais , Temperatura Alta , Mortalidade , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Respiratórias/epidemiologia
17.
Res Rep Health Eff Inst ; (171): 5-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23311234

RESUMO

INTRODUCTION: The ESCALA* project (Estudio de Salud y Contaminación del Aire en Latinoamérica) is an HEI-funded study that aims to examine the association between exposure to outdoor air pollution and mortality in nine Latin American cities, using a common analytic framework to obtain comparable and updated information on the effects of air pollution on several causes of death in different age groups. This report summarizes the work conducted between 2006 and 2009, describes the methodologic issues addressed during project development, and presents city-specific results of meta-analyses and meta-regression analyses. METHODS: The ESCALA project involved three teams of investigators responsible for collection and analysis of city-specific air pollution and mortality data from three different countries. The teams designed five different protocols to standardize the methods of data collection and analysis that would be used to evaluate the effects of air pollution on mortality (see Appendices B-F). By following the same protocols, the investigators could directly compare the results among cities. The analysis was conducted in two stages. The first stage included analyses of all-natural-cause and cause-specific mortality related to particulate matter < or = 10 pm in aerodynamic diameter (PM10) and to ozone (O3) in cities of Brazil, Chile, and México. Analyses for PM10 and O3 were also stratified by age group and O3 analyses were stratified by season. Generalized linear models (GLM) in Poisson regression were used to fit the time-series data. Time trends and seasonality were modeled using natural splines with 3, 6, 9, or 12 degrees of freedom (df) per year. Temperature and humidity were also modeled using natural splines, initially with 3 or 6 df, and then with degrees of freedom chosen on the basis of residual diagnostics (i.e., partial autocorrelation function [PACF], periodograms, and a Q-Q plot) (Appendix H, available on the HEI Web site). Indicator variables for day-of-week and holidays were used to account for short-term cyclic fluctuations. To assess the association between exposure to air pollution and risk of death, the PM10 and O3 data were fit using distributed lag models (DLMs). These models are based on findings indicating that the health effects associated with air pollutant concentrations on a given day may accumulate over several subsequent days. Each DLM measured the cumulative effect of a pollutant concentration on a given day (day 0) and that day's contribution to the effect of that pollutant on multiple subsequent (lagged) days. For this study, exposure lags of up to 3, 5, and 10 days were explored. However, only the results of the DLMs using a 3-day lag (DLM 0-3) are presented in this report because we found a decreasing association with mortality in various age-cause groups for increasing lag effects from 3 to 5 days for both PM10 and O3. The potential modifying effect of socioeconomic status (SES) on the association of PM10 or O3 concentration and mortality was also explored in four cities: Mexico City, Rio de Janeiro, São Paulo, and Santiago. The methodology for developing a common SES index is presented in the report. The second stage included meta-analyses and metaregression. During this stage, the associations between mortality and air pollution were compared among cities to evaluate the presence of heterogeneity and to explore city-level variables that might explain this heterogeneity. Meta-analyses were conducted to combine mortality effect estimates across cities and to evaluate the presence of heterogeneity among city results, whereas meta-regression models were used to explore variables that might explain the heterogeneity among cities in mortality risks associated with exposures to PM10 (but not to O3). RESULTS: The results of the mortality analyses are presented as risk percent changes (RPC) with a 95% confidence interval (CI). RPC is the increase in mortality risk associated with an increase of 10 microg/m3 in the 24-hour average concentration of PM10 or in the daily maximum 8-hour moving average concentration of O3. Most of the results for PM10 were positive and statistically significant, showing an increased risk of mortality with increased ambient concentrations. Results for O3 also showed a statistically significant increase in mortality in the cities with available data. With the distributed lag model, DLM 0-3, PM10 ambient concentrations were associated with an increased risk of mortality in all cities except Concepci6n and Temuco. In Mexico City and Santiago the RPC and 95% CIs were 1.02% (0.87 to 1.17) and 0.48% (0.35 to 0.61), respectively. PM10 was also significantly associated with increased mortality from cardiopulmonary, respiratory, cardiovascular, cerebrovascular-stroke, and chronic obstructive lung diseases (COPD) in most cities. The few nonsignificant effects generally were observed in the smallest cities (Concepción, Temuco, and Toluca). The percentage increases in mortality associated with ambient O3 concentrations were smaller than for those associated with PM10. All-natural-cause mortality was significantly related to O3 in Mexico City, Monterrey, São Paulo and Rio de Janeiro. Increased mortality risks for some specific causes were also observed in these cities and in Santiago. In the analyses stratified by season, different patterns in mortality and O3 were observed for cold and warm seasons. Risk estimates for the warm season were larger and significant for several causes of death in São Paulo and Rio de Janeiro. Risk estimates for the cold season were larger and significant for some causes of death in Mexico City, Monterrey, and Toluca. In an analysis stratified by SES, the all-natural-cause mortality risk in Mexico City was larger for people with a medium SES; however we observed that the risk of mortality related to respiratory causes was larger among people with a low SES, while the risk of mortality related to cardiovascular and cerebrovascular-stroke causes was larger among people with medium or high SES. In São Paulo, the all-natural-cause mortality risk was larger in people with a high SES, while in Rio de Janeiro the all-natural-cause mortality risk was larger in people with a low SES. In both Brazilian cities, the risks of mortality were larger for respiratory causes, especially for the low- and high-SES groups. In Santiago, all-natural-cause mortality risk did not vary with level of SES; however, people with a low SES had a higher respiratory mortality risk, particularly for COPD. People with a medium SES had larger risks of mortality from cardiovascular and cerebrovascular-stroke disease. The effect of ambient PM10 concentrations on infant and child mortality from respiratory causes and lower respiratory infection (LRI) was studied only for Mexico City, Santiago, and São Paulo. Significant increased mortality risk from these causes was observed in both Santiago (in infants and older children) and Mexico City (only in infants). For O3, an increased mortality risk was observed in Mexico City (in infants and older children) and in São Paulo (only in infants during the warm season). The results of the meta-analyses confirmed the positive and statistically significant association between PM10 and all-natural-cause mortality (RPC = 0.77% [95% CI: 0.60 to 1.00]) using the random-effects model. For mortality from specific causes, the percentage increase in mortality ranged from 0.72% (0.54 to 0.89) for cardiovascular disease to 2.44% (1.36 to 3.59) for COPD, also using the random-effects model. For O3, significant positive associations were observed using the random-effects model for some causes, but not for all natural causes or for respiratory diseases in people 65 years or older (> or = 65 years), and not for COPD and cerebrovascular-stroke in the all-age and the > or = 65 age groups. The percentage increase in all-natural-cause mortality was 0.16% (-0.02 to 0.33). In the meta-regression analyses, variables that best explained heterogeneity in mortality risks among cities were the mean average of temperature in the warm season, population percentage of infants (< 1 year), population percentage of children at least 1 year old but < 5 years (i.e., 1-4 years), population percentage of people > or = 65 years, geographic density of PM10 monitors, annual average concentrations of PM10, and mortality rates for lung cancer. CONCLUSIONS: The ESCALA project was undertaken to obtain information for assessing the effects of air pollutants on mortality in Latin America, where large populations are exposed to relatively high levels of ambient air pollution. An important goal was to provide evidence that could inform policies for controlling air pollution in Latin America. This project included the development of standardized protocols for data collection and for statistical analyses as well as statistical analytic programs (routines developed in R by the ESCALA team) to insure comparability of results. The analytic approach and statistical programming developed within this project should be of value for researchers carrying out single-city analyses and should facilitate the inclusion of additional Latin American cities within the ESCALA multicity project. Our analyses confirm what has been observed in other parts of the world regarding the effects of ambient PM10 and 03 concentrations on daily mortality. They also suggest that SES plays a role in the susceptibility of a population to air pollution; people with a lower SES appeared to have an increased risk of death from respiratory causes, particularly COPD. Compared with the general population, infants and young children appeared to be more susceptible to both PM10 and O3, although an increased risk of mortality was not observed in these age groups in all cities. (ABSTRACT TRUNCATED)


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/estatística & dados numéricos , Doenças Respiratórias/mortalidade , Saúde da População Urbana/estatística & dados numéricos , Adolescente , Adulto , Distribuição por Idade , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Doenças Cardiovasculares/induzido quimicamente , Criança , Pré-Escolar , Clima , Feminino , Humanos , Lactente , América Latina/epidemiologia , Masculino , Pessoa de Meia-Idade , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Respiratórias/induzido quimicamente , Fatores Socioeconômicos , Fatores de Tempo , Adulto Jovem
18.
Innovation (Camb) ; 3(2): 100225, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35340394

RESUMO

Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days' minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.

19.
Lancet Planet Health ; 6(5): e410-e421, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550080

RESUMO

BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5°â€ˆ× 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5°â€ˆ× 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.


Assuntos
Biodiversidade , Saúde Global , Austrália , Cidades , Feminino , Humanos , Gravidez , Temperatura
20.
Artigo em Inglês | MEDLINE | ID: mdl-34770158

RESUMO

Health effects related to exposure to air pollution such as ozone (O3) have been documented. The World Health Organization has recommended the use of the Sum of O3 Means Over 35 ppb (SOMO35) to perform Health Impact Assessments (HIA) for long-term exposure to O3. We estimated the avoidable mortality associated with long-term exposure to tropospheric O3 in 14 cities in Mexico using information for 2015. The economic valuation of avoidable deaths related to SOMO35 exposure was performed using the willingness to pay (WTP) and human capital (HC) approaches. We estimated that 627 deaths (95% uncertainty interval (UI): 227-1051) from respiratory diseases associated with the exposure to O3 would have been avoided in people over 30 years in the study area, which confirms the public health impacts of ambient air pollution. The avoidable deaths account for almost 1400 million USD under the WTP approach, whilst the HC method yielded a lost productivity estimate of 29.7 million USD due to premature deaths. Our findings represent the first evidence of the health impacts of O3 exposure in Mexico, using SOMO35 metrics.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental , Humanos , México/epidemiologia , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa