Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2309455121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116125

RESUMO

Linking genetic diversity to extinction is a common goal in genomic studies. Recently, a debate has arisen regarding the importance of genetic variation in conservation as some studies have failed to find associations between genome-wide genetic diversity and extinction risk. However, only rarely are genetic diversity and fitness measured together in the wild, and typically demographic history and environment are ignored. It is therefore difficult to infer whether a lack of an association is real or obscured by confounding factors. To address these shortcomings, we analyzed genetic data from 7,501 individuals with extinction data from 279 meadows and mortality of 1,742 larval nests in a butterfly metapopulation. We found a strong negative association between genetic diversity and extinction when considering only heterozygosity in models. However, this association disappeared when accounting for ecological covariates, suggesting a confounding between demography and genetics and a more complex role for heterozygosity in extinction risk. Modeling interactions between heterozygosity and demographic variables revealed that associations between extinction and heterozygosity were context-dependent. For example, extinction declined with increasing heterozygosity in large, but not currently small populations, although negative associations between heterozygosity, extinction, and mortality were detected in small populations with a recent history of decline. We conclude that low genetic diversity is an important predictor of extinction, predicting >25% increase in extinction beyond ecological factors in certain contexts. These results highlight that inferences about the importance of genetic diversity for population viability should not rely on genomic data alone but require investments in obtaining demographic and environmental data from natural populations.


Assuntos
Borboletas , Extinção Biológica , Variação Genética , Borboletas/genética , Animais , Heterozigoto , Meio Ambiente , Dinâmica Populacional , Ecossistema , Conservação dos Recursos Naturais
2.
Mol Biol Evol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39183719

RESUMO

Meiotic recombination through chromosomal crossing-over is a fundamental feature of sex and an important driver of genomic diversity. It ensures proper disjunction, allows increased selection responses, and prevents mutation accumulation; however, it is also mutagenic and can break up favourable haplotypes. This cost/benefit dynamic is likely to vary depending on mechanistic and evolutionary contexts, and indeed, recombination rates show huge variation in nature. Identifying the genetic architecture of this variation is key to understanding its causes and consequences. Here, we investigate individual recombination rate variation in wild house sparrows (Passer domesticus). We integrate genomic and pedigree data to identify autosomal crossover counts (ACC) and intra-chromosomal allelic shuffling (r¯intra) in 13,056 gametes transmitted from 2,653 individuals to their offspring. Females had 1.37 times higher ACC, and 1.55 times higher r¯intra than males. ACC and r¯intra = 0.23 and 0.11; r¯intra h2 = 0.12 and 0.14), but cross-sex additive genetic correlations were low (rA = 0.29 and 0.32 for ACC and r¯intra). Conditional bivariate analyses showed that all measures remained heritable after accounting for genetic values in the opposite sex, indicating that sex-specific ACC and r¯intra can evolve somewhat independently. Genome-wide models showed that ACC and r¯intra are polygenic and driven by many small-effect loci, many of which are likely to act in trans as global recombination modifiers. Our findings show that recombination rates of females and males can have different evolutionary potential in wild birds, providing a compelling mechanism for the evolution of sexual dimorphism in recombination.

3.
Mol Ecol ; 33(6): e17295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396362

RESUMO

Dispersal affects evolutionary processes by changing population size and genetic composition, influencing the viability and persistence of populations. Investigating which mechanisms underlie variation in dispersal phenotypes and whether populations harbour adaptive potential for dispersal is crucial to understanding the eco-evolutionary dynamics of this important trait. Here, we investigate the genetic architecture of dispersal among successfully recruited individuals in an insular metapopulation of house sparrows. We use an extensive long-term individual-based ecological data set and high-density single-nucleotide polymorphism (SNP) genotypes for over 2500 individuals. We conducted a genome-wide association study (GWAS), and found a relationship between dispersal probability and a SNP located near genes known to regulate circadian rhythm, glycogenesis and exercise performance, among other functions. However, this SNP only explained 3.8% of variance, suggesting that dispersal is a polygenic trait. We then used an animal model to estimate heritable genetic variation (σA 2 ), which composes 10% of the total variation in dispersal probability. Finally, we investigated differences in σA 2 across populations occupying ecologically relevant habitat types (farm vs. non-farm) using a genetic groups animal model. We found different adaptive potentials across habitats, with higher mean breeding value, σA 2 , and heritability for the habitat presenting lower dispersal rates, suggesting also different roles of environmental variation. Our results suggest a complex genetic architecture of dispersal and demonstrate that adaptive potential may be environment dependent in key eco-evolutionary traits. The eco-evolutionary implications of such environment dependence and consequent spatial variation are likely to become ever more important with the increased fragmentation and loss of suitable habitats for many natural populations.


Assuntos
Ecossistema , Estudo de Associação Genômica Ampla , Humanos , Animais , Evolução Biológica , Densidade Demográfica , Vertebrados , Dinâmica Populacional
4.
Am Nat ; 201(1): 125-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524936

RESUMO

AbstractThe frequency and asymmetry of mixed-species mating set the initial stage for the ecological and evolutionary implications of hybridization. How such patterns of mixed-species mating, in turn, are influenced by the combination of mate choice errors and relative species abundance remains largely unknown. We develop a mathematical model that generates predictions for how relative species abundances and mate choice errors affect hybridization patterns. When mate choice errors are small (<5%), the highest frequency of hybridization occurs when one of the hybridizing species is at low abundance, but when mate choice errors are high (>5%), the highest hybridization frequency occurs when species occur in equal proportions. Furthermore, females of the less abundant species are overrepresented in mixed-species matings. We compare our theoretical predictions with empirical data on naturally hybridizing Ficedula flycatchers and find that hybridization is highest when the two species occur in equal abundance, implying rather high mate choice errors. We discuss ecological and evolutionary implications of our findings and encourage future work on hybrid zone dynamics that take demographic aspects, such as relative species abundance, into account.


Assuntos
Preferência de Acasalamento Animal , Animais , Feminino , Especiação Genética , Hibridização Genética , Reprodução , Evolução Biológica
5.
Proc Natl Acad Sci U S A ; 117(25): 14584-14592, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513746

RESUMO

Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression. We utilized extensive long-term data on more than 3,100 individuals from eight islands in an insular house sparrow metapopulation to examine the generality of inbreeding effects. Using genomic estimates of realized inbreeding, we discovered that inbred individuals had lower survival probabilities and produced fewer recruiting offspring than noninbred individuals. Inbreeding depression, measured as the decline in fitness-related traits per unit inbreeding, did not vary appreciably among populations or with time. As a consequence, populations with more resident inbreeding (due to their demographic history) paid a higher total fitness cost, evidenced by a larger variance in fitness explained by inbreeding within these populations. Our results are in contrast to the idea that effects of inbreeding generally depend on ecological factors and genetic differences among populations, and expand the understanding of inbreeding depression in natural subdivided populations.


Assuntos
Aptidão Genética/fisiologia , Depressão por Endogamia/fisiologia , Pardais/fisiologia , Animais , Feminino , Masculino , Linhagem , Dinâmica Populacional , Análise Espaço-Temporal
6.
Proc Biol Sci ; 289(1968): 20211633, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135348

RESUMO

Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are increasingly targeted in studies of natural populations. Here, I review some of the insights gained from this research, examine some of the methods currently in use and discuss some of the challenges that researchers working on natural populations are likely to face when probing epigenetic mechanisms. While studies supporting the involvement of epigenetic mechanisms in generating phenotypic variation in natural populations are amassing, many of these studies are currently correlative in nature. Thus, while empirical data point to widespread contributions of epigenetic mechanisms in generating phenotypic variation, there are still concerns as to whether epigenetic variation is instead ultimately controlled by genetic variation. Disentangling these two sources of variation will be a key to resolving the debate about the importance of epigenetic mechanisms, and studies on natural populations that partition the relative contribution of genetic and epigenetic factors to phenotypic variation can play an important role in this debate.


Assuntos
Metilação de DNA , Epigênese Genética
7.
Proc Biol Sci ; 289(1973): 20212764, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473377

RESUMO

Insect wing polyphenism has evolved as an adaptation to changing environments and a growing body of research suggests that the nutrient-sensing insulin receptor signalling pathway is a hot spot for the evolution of polyphenisms, as it provides a direct link between growth and available nutrients in the environment. However, little is known about the potential role of insulin receptor signalling in polyphenisms which are controlled by seasonal variation in photoperiod. Here, we demonstrate that wing length polyphenism in the water strider Gerris buenoi is determined by photoperiod and nymphal density, but is not directly affected by nutrient availability. Exposure to a long-day photoperiod is highly inducive of the short-winged morph whereas high nymphal densities moderately promote the development of long wings. Using RNA interference we demonstrate that, unlike in several other species where wing polyphenism is controlled by nutrition, there is no detectable role of insulin receptor signalling in wing morph induction. Our results indicate that the multitude of possible cues that trigger wing polyphenism can be mediated through different genetic pathways and that there are multiple genetic origins to wing polyphenism in insects.


Assuntos
Fotoperíodo , Asas de Animais , Animais , Insetos , Receptor de Insulina/genética , Transdução de Sinais , Água
8.
Proc Biol Sci ; 289(1976): 20220322, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673865

RESUMO

Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that nearly all tested factors strongly affected departure probabilities, but that the same factors explained very little variation in realized dispersal distances. Surprisingly, we found no effect of dispersal distance on post-settlement survival. Rather, survival was influenced by weather conditions, quality of the natal habitat patch, and a strong interaction between genotype and occupancy status of the settled habitat patch, with more mobile genotypes having higher survival as colonists rather than as immigrants. Our work highlights the multi-causality of dispersal and that some dispersal costs can only be understood by considering extrinsic and intrinsic factors and their interaction across the entire dispersal process.


Assuntos
Borboletas , Animais , Borboletas/genética , Ecossistema , Genótipo , Dinâmica Populacional , Tempo (Meteorologia)
9.
BMC Genomics ; 22(1): 36, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413102

RESUMO

BACKGROUND: DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. RESULTS: We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. CONCLUSION: Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.


Assuntos
Passeriformes , Aves Canoras , Animais , Ilhas de CpG , Metilação de DNA , Feminino , Passeriformes/genética , RNA , Reprodução , Aves Canoras/genética
10.
Mol Ecol ; 30(15): 3645-3659, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33453134

RESUMO

Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome-wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits.


Assuntos
Passeriformes , Aves Canoras , Animais , Metilação de DNA , Epigênese Genética , Feminino , Reprodução/genética , Estações do Ano , Aves Canoras/genética
11.
Mol Ecol ; 30(19): 4740-4756, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270821

RESUMO

Dispersal has a crucial role determining ecoevolutionary dynamics through both gene flow and population size regulation. However, to study dispersal and its consequences, one must distinguish immigrants from residents. Dispersers can be identified using telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods. All of these methods have disadvantages, such as high costs and substantial field efforts needed for telemetry and CMR surveys, and adequate genetic distance required in genetic assignment. In this study, we used genome-wide 200K Single Nucleotide Polymorphism data and two different genetic assignment approaches (GSI_SIM, Bayesian framework; BONE, network-based estimation) to identify the dispersers in a house sparrow (Passer domesticus) metapopulation sampled over 16 years. Our results showed higher assignment accuracy with BONE. Hence, we proceeded to diagnose potential sources of errors in the assignment results from the BONE method due to variation in levels of interpopulation genetic differentiation, intrapopulation genetic variation and sample size. We show that assignment accuracy is high even at low levels of genetic differentiation and that it increases with the proportion of a population that has been sampled. Finally, we highlight that dispersal studies integrating both ecological and genetic data provide robust assessments of the dispersal patterns in natural populations.


Assuntos
Pardais , Animais , Teorema de Bayes , Deriva Genética , Linhagem , Densidade Demográfica , Pardais/genética
13.
Mol Ecol ; 29(20): 3812-3829, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32474990

RESUMO

Host-parasite relationships are likely to change over the coming decades in response to climate change and increased anthropogenic stressors. Understanding the genetic architecture of parasite resistance will aid prediction of species' responses to intensified parasite challenge. The gapeworm "Syngamus trachea" is prevalent in natural bird populations and causes symptomatic infections ranging from mild to severe. The parasite may affect ecological processes by curtailing bird populations and is important due to its propensity to spread to commercially farmed birds. Our large-scale data set on an insular house sparrow metapopulation in northern Norway includes information on gapeworm prevalence and infection intensity, allowing assessment of the genetics of parasite resistance in a natural system. To determine whether parasite resistance has a heritable genetic component, we performed variance component analyses using animal models. Resistance to gapeworm had substantial additive genetic and dominance variance, and genome-wide association studies to identify single nucleotide polymorphisms associated with gapeworm resistance yielded multiple loci linked to immune function. Together with genome partitioning results, this indicates that resistance to gapeworm is under polygenic control in the house sparrow, and probably in other bird species. Hence, our results provide the foundation needed to study any eco-evolutionary processes related to gapeworm infection, and show that it is necessary to use methods suitable for polygenic and nonadditive genetic effects on the phenotype.


Assuntos
Parasitos , Pardais , Animais , Estudo de Associação Genômica Ampla , Noruega , Fenótipo , Pardais/genética
14.
Mol Ecol ; 27(17): 3498-3514, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040161

RESUMO

Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large-scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco-evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular-scale evolution of genetic architecture.


Assuntos
Bico/anatomia & histologia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Pardais/genética , Animais , Estudos de Associação Genética , Modelos Genéticos , Noruega , Fenótipo , Análise de Componente Principal , Pardais/anatomia & histologia
15.
PLoS Biol ; 13(4): e1002120, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-25848856

RESUMO

Climate change has differentially affected the timing of seasonal events for interacting trophic levels, and this has often led to increased selection on seasonal timing. Yet, the environmental variables driving this selection have rarely been identified, limiting our ability to predict future ecological impacts of climate change. Using a dataset spanning 31 years from a natural population of pied flycatchers (Ficedula hypoleuca), we show that directional selection on timing of reproduction intensified in the first two decades (1980-2000) but weakened during the last decade (2001-2010). Against expectation, this pattern could not be explained by the temporal variation in the phenological mismatch with food abundance. We therefore explored an alternative hypothesis that selection on timing was affected by conditions individuals experience when arriving in spring at the breeding grounds: arriving early in cold conditions may reduce survival. First, we show that in female recruits, spring arrival date in the first breeding year correlates positively with hatch date; hence, early-hatched individuals experience colder conditions at arrival than late-hatched individuals. Second, we show that when temperatures at arrival in the recruitment year were high, early-hatched young had a higher recruitment probability than when temperatures were low. We interpret this as a potential cost of arriving early in colder years, and climate warming may have reduced this cost. We thus show that higher temperatures in the arrival year of recruits were associated with stronger selection for early reproduction in the years these birds were born. As arrival temperatures in the beginning of the study increased, but recently declined again, directional selection on timing of reproduction showed a nonlinear change. We demonstrate that environmental conditions with a lag of up to two years can alter selection on phenological traits in natural populations, something that has important implications for our understanding of how climate can alter patterns of selection in natural populations.


Assuntos
Migração Animal , Reprodução , Estações do Ano , Aves Canoras/fisiologia , Temperatura , Animais
17.
Proc Biol Sci ; 282(1806): 20150156, 2015 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833857

RESUMO

Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.


Assuntos
Tamanho da Ninhada , Variação Genética , Fenótipo , Aves Canoras/fisiologia , Animais , Feminino , Estudo de Associação Genômica Ampla , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Aves Canoras/genética , Suécia
18.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26108633

RESUMO

The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h(2) = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Variação Genética , Smegmamorpha/anatomia & histologia , Smegmamorpha/genética , Animais , Feminino , Masculino , Tamanho do Órgão
19.
Am Nat ; 184(3): 374-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25141146

RESUMO

Carotenoid-based coloration plays an important role in signaling, is often sexually dimorphic, and is potentially subject to directional and/or sex-specific selection. To understand the evolutionary dynamics of such color traits, it is essential to quantify patterns of inheritance, yet nonautosomal sources of genetic variation are easily overlooked by classical heritability analyses. Carotenoid metabolism has recently been linked to mitochondria, highlighting the potential for color variation to be explained by cytoplasmically inherited factors. In this study, we used quantitative genetic animal models to estimate the importance of mitochondrial and sex chromosome-linked sources of genetic variation in coloration in two songbird populations in which dietary carotenoids are either unmodified (great tit plumage) or metabolized into alternative color forms (zebra finch beak). We found no significant Z-linked genetic variance in great tit plumage coloration, while zebra finch beak coloration exhibited significant W linkage and cytoplasmic inheritance. Our results support cytoplasmic inheritance of color in the zebra finch, a trait based on endogenously metabolized carotenoids, and demonstrate the potential for nonautosomal sources to account for a considerable share of genetic variation in coloration. Although often overlooked, such nonautosomal genetic variation exhibits sex-dependent patterns of inheritance and potentially influences the evolution of sexual dichromatism.


Assuntos
Carotenoides/genética , Ligação Genética , Passeriformes/genética , Aves Canoras/genética , Animais , Bico , Carotenoides/metabolismo , Cor , Dieta , Plumas , Feminino , Variação Genética , Masculino , Passeriformes/metabolismo , Fenótipo , Aves Canoras/metabolismo
20.
Mol Ecol ; 23(16): 4035-58, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24863701

RESUMO

Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high-density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best-order map contained 4215 markers, with a total distance of 3132 cM and a mean genetic distance between markers of 0.12 cM. Facilitated by the array being designed to include markers from most scaffolds, we obtained a second-generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super-scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5-2.0 event (6.6-7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cM/Mb and correlated closely with chromosome size, from 2 cM/Mb for chromosomes >100 Mb to >10 cM/Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes.


Assuntos
Evolução Molecular , Ligação Genética , Recombinação Genética , Aves Canoras/genética , Animais , Galinhas , Mapeamento Cromossômico , Feminino , Tentilhões , Genoma , Técnicas de Genotipagem , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sintenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa