Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32860704

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy with an immunosuppressive microenvironment that is resistant to most therapies. IL17 is involved in pancreatic tumorigenesis, but its role in invasive PDAC is undetermined. We hypothesized that IL17 triggers and sustains PDAC immunosuppression. We inhibited IL17/IL17RA signaling using pharmacological and genetic strategies alongside mass cytometry and multiplex immunofluorescence techniques. We uncovered that IL17 recruits neutrophils, triggers neutrophil extracellular traps (NETs), and excludes cytotoxic CD8 T cells from tumors. Additionally, IL17 blockade increases immune checkpoint blockade (PD-1, CTLA4) sensitivity. Inhibition of neutrophils or Padi4-dependent NETosis phenocopies IL17 neutralization. NMR spectroscopy revealed changes in tumor lactate as a potential early biomarker for IL17/PD-1 combination efficacy. Higher expression of IL17 and PADI4 in human PDAC corresponds with poorer prognosis, and the serum of patients with PDAC has higher potential for NETosis. Clinical studies with IL17 and checkpoint blockade represent a novel combinatorial therapy with potential efficacy for this lethal disease.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-17/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Terapia de Imunossupressão , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
2.
Free Radic Biol Med ; 45(1): 18-31, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18439435

RESUMO

Nitric oxide (NO) has earned the reputation of being a signaling mediator with many diverse and often opposing biological activities. The diversity in response to this simple diatomic molecule comes from the enormous variety of chemical reactions and biological properties associated with it. In the past few years, the importance of steady-state NO concentrations has emerged as a key determinant of its biological function. Precise cellular responses are differentially regulated by specific NO concentration. We propose five basic distinct concentration levels of NO activity: cGMP-mediated processes ([NO]<1-30 nM), Akt phosphorylation ([NO] = 30-100 nM), stabilization of HIF-1alpha ([NO] = 100-300 nM), phosphorylation of p53 ([NO]>400 nM), and nitrosative stress (1 microM). In general, lower NO concentrations promote cell survival and proliferation, whereas higher levels favor cell cycle arrest, apoptosis, and senescence. Free radical interactions will also influence NO signaling. One of the consequences of reactive oxygen species generation is to reduce NO concentrations. This antagonizes the signaling of nitric oxide and in some cases results in converting a cell-cycle arrest profile to a cell survival profile. The resulting reactive nitrogen species that are generated from these reactions can also have biological effects and increase oxidative and nitrosative stress responses. A number of factors determine the formation of NO and its concentration, such as diffusion, consumption, and substrate availability, which are referred to as kinetic determinants for molecular target interactions. These are the chemical and biochemical parameters that shape cellular responses to NO. Herein we discuss signal transduction and the chemical biology of NO in terms of the direct and indirect reactions.


Assuntos
Óxido Nítrico/química , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Difusão , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa