RESUMO
Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.
Assuntos
Arginina/química , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Citoplasma/metabolismo , Metilação de DNA , DNA Complementar/metabolismo , Densitometria , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Homeostase , Humanos , Carioferinas/química , Espectroscopia de Ressonância Magnética , Metilação , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/metabolismo , Ligação Proteica , Domínios ProteicosRESUMO
Post-translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA-binding protein TAR DNA-binding protein (TDP-43), is hyperphosphorylated in disease on several C-terminal serine residues, a process generally believed to promote TDP-43 aggregation. Here, we however find that Casein kinase 1δ-mediated TDP-43 hyperphosphorylation or C-terminal phosphomimetic mutations reduce TDP-43 phase separation and aggregation, and instead render TDP-43 condensates more liquid-like and dynamic. Multi-scale molecular dynamics simulations reveal reduced homotypic interactions of TDP-43 low-complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP-43, but suppress accumulation of TDP-43 in membrane-less organelles and promote its solubility in neurons. We speculate that TDP-43 hyperphosphorylation may be a protective cellular response to counteract TDP-43 aggregation.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Agregados Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Dipeptide repeat proteins (DPRs) are aberrant protein species found in C9orf72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases characterized by the cytoplasmic mislocalization and aggregation of RNA-binding proteins (RBPs). In particular, arginine (R)-rich DPRs (poly-GR and poly-PR) have been suggested to promiscuously interact with multiple cellular proteins and thereby exert high cytotoxicity. Components of the protein arginine methylation machinery have been identified as modulators of DPR toxicity and/or potential cellular interactors of R-rich DPRs; however, the molecular details and consequences of such an interaction are currently not well understood. Here, we demonstrate that several members of the family of protein arginine methyltransferases (PRMTs) can directly interact with R-rich DPRs in vitro and in the cytosol. In vitro, R-rich DPRs reduce solubility and promote phase separation of PRMT1, the main enzyme responsible for asymmetric arginine-dimethylation (ADMA) in mammalian cells, in a concentration- and length-dependent manner. Moreover, we demonstrate that poly-GR interferes more efficiently than poly-PR with PRMT1-mediated arginine methylation of RBPs such as hnRNPA3. We additionally show by two alternative approaches that poly-GR itself is a substrate for PRMT1-mediated arginine dimethylation. We propose that poly-GR may act as a direct competitor for arginine methylation of cellular PRMT1 targets, such as disease-linked RBPs.
Assuntos
Arginina , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a RNA , Proteínas Repressoras , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Arginina/metabolismo , Metilação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/genética , Células HEK293RESUMO
TDP-43-positive inclusions in neurons are a hallmark of several neurodegenerative diseases including familial amyotrophic lateral sclerosis (fALS) caused by pathogenic TARDBP variants as well as more common non-Mendelian sporadic ALS (sALS). Here we report a G376V-TDP-43 missense variant in the C-terminal prion-like domain of the protein in two French families affected by an autosomal dominant myopathy but not fulfilling diagnostic criteria for ALS. Patients from both families presented with progressive weakness and atrophy of distal muscles, starting in their 5th-7th decade. Muscle biopsies revealed a degenerative myopathy characterized by accumulation of rimmed (autophagic) vacuoles, disruption of sarcomere integrity and severe myofibrillar disorganization. The G376â V variant altered a highly conserved amino acid residue and was absent in databases on human genome variation. Variant pathogenicity was supported by in silico analyses and functional studies. The G376â V mutant increased the formation of cytoplasmic TDP-43 condensates in cell culture models, promoted assembly into high molecular weight oligomers and aggregates in vitro, and altered morphology of TDP-43 condensates arising from phase separation. Moreover, the variant led to the formation of cytoplasmic TDP-43 condensates in patient-derived myoblasts and induced abnormal mRNA splicing in patient muscle tissue. The identification of individuals with TDP-43-related myopathy but not ALS implies that TARDBP missense variants may have more pleiotropic effects than previously anticipated and support a primary role for TDP-43 in skeletal muscle pathophysiology. We propose to include TARDBP screening in the genetic work-up of patients with late-onset distal myopathy. Further research is warranted to examine the precise pathogenic mechanisms of TARDBP variants causing either a neurodegenerative or myopathic phenotype.
RESUMO
The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.
Assuntos
Núcleo Celular/metabolismo , Sinais de Localização Nuclear , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Arginina/química , Arginina/metabolismo , Citoplasma/metabolismo , Glicina/química , Glicina/metabolismo , Células HeLa , Humanos , Fragmentos de Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/química , Serina/química , Serina/metabolismo , Tirosina/química , Tirosina/metabolismo , beta Carioferinas/químicaRESUMO
Defects in nucleocytoplasmic transport have been associated with several neurodegenerative disorders and, in particular, the formation of pathological protein aggregates characteristic for the respective disease. However, whether impaired nucleocytoplasmic transport is a consequence of such aggregates or rather contributes to their formation is still mostly unclear. In this review, we summarize recent findings how both soluble and stationary components of the nucleocytoplasmic transport machinery are altered in neurodegenerative diseases, in particular amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD) and Huntington's disease (HD). We discuss the functional significance of the observed defects for nucleocytoplasmic transport of proteins and mRNAs. Moreover, we highlight interesting parallels observed in physiological ageing and the premature ageing syndrome progeria and propose that they that might provide mechanistic insights also for neurodegenerative processes.
Assuntos
Transporte Ativo do Núcleo Celular , Doenças Neurodegenerativas/metabolismo , HumanosRESUMO
Fused in sarcoma (FUS) is a predominantly nuclear RNA-binding protein with key functions in RNA processing and DNA damage repair. Defects in nuclear import of FUS have been linked to severe neurodegenerative diseases; hence, it is of great interest to understand this process and how it is dysregulated in disease. Transportin-1 (TNPO1) and the closely related transportin-2 have been identified as major nuclear import receptors of FUS. They bind to the C-terminal nuclear localization signal of FUS and mediate the protein's nuclear import and at the same time also suppress aberrant phase transitions of FUS in the cytoplasm. Whether FUS can utilize other nuclear transport receptors for the purpose of import and chaperoning has not been examined so far. Here, we show that FUS directly binds to different import receptors in vitro. FUS formed stable complexes not only with TNPO1 but also with transportin-3, importin ß, importin 7, or the importin ß/7 heterodimer. Binding of these alternative import receptors required arginine residues within FUS-RG/RGG motifs and was weakened by arginine methylation. Interaction with these importins suppressed FUS phase separation and reduced its sequestration into stress granules. In a permeabilized cell system, we further showed that transportin-3 had the capacity to import FUS into the nucleus, albeit with lower efficiency than TNPO1. Our data suggest that aggregation-prone RNA-binding proteins such as FUS may utilize a network of importins for chaperoning and import, similar to histones and ribosomal proteins.
Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , beta Carioferinas/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Carioferinas/genética , Chaperonas Moleculares/genética , Sinais de Localização Nuclear , Ligação Proteica , Proteína FUS de Ligação a RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , beta Carioferinas/genéticaRESUMO
Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses.
Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Transdução de Sinais , Estresse Fisiológico/fisiologia , Animais , Corpos Enovelados/metabolismo , Reparo do DNA/fisiologia , Humanos , Modelos Biológicos , Proteína Supressora de Tumor p53/fisiologiaRESUMO
Posttranslational SUMO modification is an important mechanism of regulating protein function, especially in the cell nucleus. The nucleolus is the subnuclear organelle responsible for rRNA synthesis, processing, and assembly of the large and small ribosome subunits. Here, we have used SILAC-based quantitative proteomics to identify nucleolar SUMOylated proteins. This reveals a role for SUMOylation in the biogenesis and/or function of small nucleolar ribonucleoprotein complexes (snoRNPs) via the targeting of Nhp2 and Nop58. Using combined in vitro and in vivo approaches, both Nhp2 and Nop58 (also known as Nop5) are shown to be substrates for SUMOylation. Mutational analyses revealed the sites of modification on Nhp2 as K5, and on Nop58 as K467 and K497. Unlike Nop58 and Nhp2, the closely related Nop56 and 15.5K proteins appear not to be SUMO targets. SUMOylation is essential for high-affinity Nop58 binding to snoRNAs. This study provides direct evidence linking SUMO modification with snoRNP function.
Assuntos
Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Lisina , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteômica/métodos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteína SUMO-1/metabolismo , Transfecção , Ubiquitinas/metabolismoRESUMO
Cajal bodies are nuclear structures that are involved in biogenesis of snRNPs and snoRNPs, maintenance of telomeres and processing of histone mRNA. Recently, the SUMO isopeptidase USPL1 was identified as a component of Cajal bodies that is essential for cellular growth and Cajal body integrity. However, a cellular function for USPL1 is so far unknown. Here, we use RNAi-mediated knockdown in human cells in combination with biochemical and fluorescence microscopy approaches to investigate the function of USPL1 and its link to Cajal bodies. We demonstrate that levels of snRNAs transcribed by RNA polymerase (RNAP) II are reduced upon knockdown of USPL1 and that downstream processes such as snRNP assembly and pre-mRNA splicing are compromised. Importantly, we find that USPL1 associates directly with U snRNA loci and that it interacts and colocalises with components of the Little Elongation Complex, which is involved in RNAPII-mediated snRNA transcription. Thus, our data indicate that USPL1 plays a key role in RNAPII-mediated snRNA transcription.
Assuntos
Endopeptidases/fisiologia , RNA Polimerase II/fisiologia , RNA Nuclear Pequeno/genética , Transcrição Gênica , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Corpos Enovelados , Loci Gênicos , Células HEK293 , Humanos , Multimerização Proteica , Transporte Proteico , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismoRESUMO
In vertebrates, the nuclear pore complex (NPC), the gate for transport of macromolecules between the nucleus and the cytoplasm, consists of approximately 30 different nucleoporins (Nups). The Nup and SUMO E3-ligase Nup358/RanBP2 are the major components of the cytoplasmic filaments of the NPC. In this study, we perform a structure-function analysis of Nup358 and describe its role in nuclear import of specific proteins. In a screen for nuclear proteins that accumulate in the cytoplasm upon Nup358 depletion, we identified proteins that were able to interact with Nup358 in a receptor-independent manner. These included the importin α/ß-cargo DBC-1 (deleted in breast cancer 1) and DMAP-1 (DNA methyltransferase 1 associated protein 1). Strikingly, a short N-terminal fragment of Nup358 was sufficient to promote import of DBC-1, whereas DMAP-1 required a larger portion of Nup358 for stimulated import. Neither the interaction of RanGAP with Nup358 nor its SUMO-E3 ligase activity was required for nuclear import of all tested cargos. Together, Nup358 functions as a cargo- and receptor-specific assembly platform, increasing the efficiency of nuclear import of proteins through various mechanisms.
Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Carioferinas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Proteico/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HeLa , Humanos , Carioferinas/genética , Chaperonas Moleculares/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Sinais de Localização Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual/fisiologia , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência/fisiologia , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fatores Estimuladores Upstream/genética , Fatores Estimuladores Upstream/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Synaptic plasticity, learning, and memory require high temporal and spatial control of gene expression. These processes are thought to rely mainly on asymmetric mRNA transport to synapses. Already in the early days of studying mRNA transport, Wilhelm and Vale proposed a multi-step process in 1993. Since then, we have gained important novel insights into how these individual steps are controlled by research performed in various cell types and organisms. Here, we present the latest view on how dendritic mRNA localization is achieved and how local translation at the synapse is regulated. In particular, we propose that the recently observed heterogeneity of RNA-protein particle assembly in neurons might be the key for how precise gene expression in the brain is achieved. In addition, we focus on latest data dealing with translational activation of translationally repressed mRNPs at a synapse that experiences learning-induced changes in its morphology and function. Together, these new findings shed new light on how precise regulatory mechanisms can lead to synaptic plasticity and memory formation.
Assuntos
Plasticidade Neuronal/genética , Transporte de RNA/genética , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Memória/fisiologia , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Sinapses/genética , Sinapses/metabolismoRESUMO
Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.
PURA syndrome is a neurodevelopmental disorder that affects about 650 patients worldwide, resulting in a range of symptoms including neurodevelopmental delays, intellectual disability, muscle weakness, seizures, and eating difficulties. The condition is caused by a mutated gene that codes for a protein called PURA. PURA binds RNA the molecule that carries genetic information so it can be translated into proteins and has roles in regulating the production of new proteins. Contrary to other conditions that result from mutations in a single gene, PURA syndrome patients show 'high penetrance', meaning almost every reported mutation in the gene leads to symptoms. Proske, Janowski et al. wanted to understand the molecular basis for this high penetrance. To find out more, the researchers first examined how patient mutations affected the location of the PURA in the cell, using human cells grown in the laboratory. Normally, PURA travels to P-bodies, which are groupings of RNA and proteins involved in regulating which genes get translated into proteins. The researchers found that in cells carrying PURA syndrome mutations, PURA failed to move adequately to P-bodies. To find out how this 'mislocalization' might happen, Proske, Janowski et al. tested how different mutations affected the three-dimensional folding of PURA. These analyses showed that the mutations impair the protein's folding and thereby disrupt PURA's ability to bind RNA, which may explain why mutant PURA cannot localize correctly. Proske, Janowski et al. describe the molecular abnormalities of PURA underlying this disorder and show how molecular analysis of patient mutations can reveal the mechanisms of a disease at the cell level. The results show that the impact of mutations on the structural integrity of the protein, which affects its ability to bind RNA, are likely key to the symptoms of the syndrome. Additionally, their approach used establishes a way to predict and test mutations that will cause PURA syndrome. This may help to develop diagnostic tools for this condition.
Assuntos
Transtornos do Neurodesenvolvimento , Corpos de Processamento , Humanos , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Corpos de Processamento/metabolismo , Corpos de Processamento/patologia , Grânulos de Estresse/metabolismo , Cristalografia por Raios X , Dimerização , Domínios Proteicos , Dicroísmo Circular , Proteínas Recombinantes , Dobramento de Proteína , Penetrância , Substituição de Aminoácidos , Mutação Puntual , Células HeLaRESUMO
Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ("rNLS8" model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1ß, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.
Assuntos
Anticorpos Monoclonais , Filamentos Intermediários , Animais , Camundongos , Epitopos , Imunização , NF-kappa BRESUMO
The nucleolus is the subnuclear organelle responsible for ribosome subunit biogenesis and can also act as a stress sensor. It forms around clusters of ribosomal DNA (rDNA) and is mainly organised in three subcompartments, i.e. fibrillar centre, dense fibrillar component and granular component. Here, we describe the localisation of 21 protein factors to an intranucleolar region different to these main subcompartments, called the intranucleolar body (INB). These factors include proteins involved in DNA maintenance, protein turnover, RNA metabolism, chromatin organisation and the post-translational modifiers SUMO1 and SUMO2/3. Increase in the size and number of INBs is promoted by specific types of DNA damage and depends on the functional integrity of the nucleolus. INBs are abundant in nucleoli of unstressed cells during S phase and localise in close proximity to rDNA with heterochromatic features. The data suggest the INB is linked with regulation of rDNA transcription and/or maintenance of rDNA.
Assuntos
Nucléolo Celular/genética , DNA Ribossômico/genética , Animais , Bovinos , Linhagem Celular , Nucléolo Celular/metabolismo , DNA Ribossômico/metabolismo , Humanos , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Pele/citologia , Pele/metabolismoRESUMO
In the recent years, defective nuclear import has emerged as an important pathomechanism of neurodegenerative diseases, particularly in amyotrophic lateral sclerosis (ALS). Here, specific nuclear RNA binding proteins (RBPs) mislocalize and aggregate in the cytoplasm of neurons and glial cells in degenerating brain regions. Bona fide transport assays that measure nuclear import in a quantitative manner allow one to distinguish whether disease-linked RBP mutations that cause cytosolic RBP mislocalization directly result in reduced nuclear import or cause increased cytoplasmic localization of the RBP through other mechanisms. Here we describe the quantitative analysis of nuclear import rates of RBPs using a hormone-inducible system by live cell imaging.
Assuntos
Medições Luminescentes , Doenças Neurodegenerativas , Proteínas de Ligação a RNA , Transporte Ativo do Núcleo Celular/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Citoplasma/metabolismo , Proteínas de Fluorescência Verde , Hormônios/metabolismo , Humanos , Medições Luminescentes/métodos , Microscopia de Fluorescência/métodos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Decreasing the activation of pathology-activated microglia is crucial to prevent chronic inflammation and tissue scarring. In this study, we used a stab wound injury model in zebrafish and identified an injury-induced microglial state characterized by the accumulation of lipid droplets and TAR DNA-binding protein of 43 kDa (TDP-43)+ condensates. Granulin-mediated clearance of both lipid droplets and TDP-43+ condensates was necessary and sufficient to promote the return of microglia back to the basal state and achieve scarless regeneration. Moreover, in postmortem cortical brain tissues from patients with traumatic brain injury, the extent of microglial activation correlated with the accumulation of lipid droplets and TDP-43+ condensates. Together, our results reveal a mechanism required for restoring microglia to a nonactivated state after injury, which has potential for new therapeutic applications in humans.
Assuntos
Lesões Encefálicas Traumáticas , Microglia , Humanos , Animais , Gotículas Lipídicas , Peixe-Zebra , Proteínas de Ligação a DNA , RegeneraçãoRESUMO
Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications.
RESUMO
Neurons have the capacity to adapt to environmental stimuli, a phenomenon termed cellular plasticity. The underlying processes are controlled by a network of RNA-binding proteins (RBPs). Their precise impact, however, is largely unknown. To address this important question, we chose Pumilio2 (Pum2) and Staufen2 (Stau2), which both regulate synaptic transmission. Surprisingly, even though both RBPs dynamically interact with each other in neurons, their respective impact on the transcriptome and proteome is highly selective. Although Pum2 deficiency leads to reduced translation and protein expression, Stau2 depletion preferentially impacts RNA levels and increases protein abundance. Furthermore, we show that Pum2 activates expression of key GABAergic synaptic components, e.g., the GABAA receptor scaffold protein Gephyrin. Consequently, Pum2 depletion selectively reduced the amplitude of miniature inhibitory postsynaptic currents. Together, our data argue for an important role of RBPs to maintain proteostasis in order to control distinct aspects of synaptic transmission.
Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transmissão Sináptica , Transcriptoma/genéticaRESUMO
Stress granules (SGs) are membrane-less organelles that form in the cytoplasm through phase separation, in response to diverse stressors. SGs contain translationally stalled mRNAs, proteins involved in translation, and various RNA-binding proteins (RBPs). Due to the high local concentration of aggregation-prone RBPs, SGs might act as condensation sites for aberrant phase transitions of RBPs and could favor formation of solid protein aggregates underlying the pathological cytoplasmic inclusions found in numerous neurodegenerative diseases. Most assays aiming at studying the recruitment of RBPs into SGs are based on overexpression and SG recruitment of RBPs in intact cells. These approaches are, however, often limited by the predominantly nuclear localization of many RBPs, which precludes cytoplasmic RBP concentrations sufficient for SG localization, and does not address RBP recruitment independent of SG formation. Here, we present a quantitative method to assess recruitment of recombinant RBPs into pre-formed SGs, independent of the RBP's nuclear localization, using semi-permeabilized cells and fluorescence microscopy. In this assay, SGs are firstly induced by a stressor, and then the plasma membrane of the stressed cells is subsequently selectively permeabilized to provide access of the recombinant protein to SGs. Nuclear import of the protein-of-interest is prevented by blocking nuclear pores with wheat germ agglutinin. This assay allows one to study the molecular mechanisms underlying recruitment of RBPs into SGs quantitatively, in absence of their nuclear import and under controlled conditions. The method allows for a direct comparison of wildtype, mutant or posttranslationally modified RBPs, for addressing the influence of other proteins' preventing or promoting SG association of RBPs, and is also applicable to synthetic peptides. Graphic abstract: Workflow overview for analysis of SG recruitment of recombinant proteins or peptides in semi-permeabilized cells.