Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 78(5): 876-889.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502422

RESUMO

Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , MicroRNAs/genética , Proteínas Associadas à Matriz Nuclear/genética , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/genética
2.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459737

RESUMO

MiRNAs are small noncoding RNAs that promote the sequence-specific repression of their respective target genes, thereby regulating diverse physiological as well as pathological processes. Here, we identify a novel role of the miR-26 family in early B cell development. We show that enhanced expression of miR-26 family members potently blocks the pre-B to immature B cell transition, promotes pre-B cell expansion and eventually enables growth factor independency. Mechanistically, this is at least partially mediated by direct repression of the tumor-suppressor Pten, which consequently enhances PI3K-AKT signaling. Conversely, limiting miR-26 activity in a more physiological loss-of-function approach counteracts proliferation and enhances pre-B cell differentiation in vitro as well as in vivo. We therefore postulate a rheostat-like role for the miR-26 family in progenitor B cells, with an increase in mature miR-26 levels signaling cell expansion, and facilitating pre-B to the immature B cell progression when reduced.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinases , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
3.
Front Immunol ; 13: 967914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110849

RESUMO

MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.


Assuntos
MicroRNAs , Receptores de Interleucina-7 , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores de Interleucina-7/genética
4.
FEBS J ; 288(5): 1533-1545, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32705746

RESUMO

MicroRNAs (miRNAs) post-transcriptionally repress almost all genes in mammals and thereby form an additional layer of gene regulation. As such, miRNAs impact on nearly every physiological process and have also been associated with cancer. Prominent examples of such miRNAs can be found in the miR-15 family, composed of the bicistronic clusters miR-15a/16-1, miR-15b/16-2, and miR-497/195. In particular, the miR-15a/16-1 cluster is deleted in almost two thirds of all chronic B lymphocytic leukemia (CLL) cases, a phenotype that is also recapitulated by miR-15a/16-1-deficient as well as miR-15b/16-2-deficient mice. Under physiological conditions, those two clusters have been implicated in T-cell function, and B-cell and natural killer (NK) cell development; however, it is unclear whether miR-497 and miR-195 confer similar roles in health and disease. Here, we have generated a conditional mouse model for tissue-specific deletion of miR-497 and miR-195. While mice lacking miR-15a/16-1 in the hematopoietic compartment developed clear signs of CLL over time, aging mice deficient for miR-497/195 did not show such a phenotype. Likewise, loss of miR-15a/16-1 impaired NK and early B-cell development, whereas miR-497/195 was dispensable for these processes. In fact, a detailed analysis of miR-497/195-deficient mice did not reveal any effect on steady-state hematopoiesis or immune cell function. Unexpectedly, even whole-body deletion of the cluster was well-tolerated and had no obvious impact on embryonic development or healthy life span. Therefore, we postulate that the miR-497/195 cluster is redundant to its paralog clusters or that its functional relevance is restricted to certain physiological and pathological conditions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/imunologia , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Animais , Animais Geneticamente Modificados , Linfócitos B/imunologia , Linfócitos B/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Homeostase/genética , Homeostase/imunologia , Humanos , Imunofenotipagem , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , MicroRNAs/imunologia , Células-Tronco Embrionárias Murinas/imunologia , Células-Tronco Embrionárias Murinas/patologia , Deleção de Sequência , Transdução de Sinais , Análise de Célula Única/métodos , Baço/imunologia , Baço/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
5.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408092

RESUMO

BACKGROUND: Immunotherapy with checkpoint inhibitors has shown impressive results in patients with melanoma, but still many do not benefit from this line of treatment. A lack of tumor-infiltrating T cells is a common reason for therapy failure but also a loss of intratumoral dendritic cells (DCs) has been described. METHODS: We used the transgenic tg(Grm1)EPv melanoma mouse strain that develops spontaneous, slow-growing tumors to perform immunological analysis during tumor progression. With flow cytometry, the frequencies of DCs and T cells at different tumor stages and the expression of the inhibitory molecules programmed cell death protein-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells were analyzed. This was complemented with RNA-sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR) analysis to investigate the immune status of the tumors. To boost DC numbers and function, we administered Fms-related tyrosine 3 ligand (Flt3L) plus an adjuvant mix of polyI:C and anti-CD40. To enhance T cell function, we tested several checkpoint blockade antibodies. Immunological alterations were characterized in tumor and tumor-draining lymph nodes (LNs) by flow cytometry, CyTOF, microarray and RT-qPCR to understand how immune cells can control tumor growth. The specific role of migratory skin DCs was investigated by coculture of sorted DC subsets with melanoma-specific CD8+ T cells. RESULTS: Our study revealed that tumor progression is characterized by upregulation of checkpoint molecules and a gradual loss of the dermal conventional DC (cDC) 2 subset. Monotherapy with checkpoint blockade could not restore antitumor immunity, whereas boosting DC numbers and activation increased tumor immunogenicity. This was reflected by higher numbers of activated cDC1 and cDC2 as well as CD4+ and CD8+ T cells in treated tumors. At the same time, the DC boost approach reinforced migratory dermal DC subsets to prime gp100-specific CD8+ T cells in tumor-draining LNs that expressed PD-1/TIM-3 and produced interferon γ (IFNγ)/tumor necrosis factor α (TNFα). As a consequence, the combination of the DC boost with antibodies against PD-1 and TIM-3 released the brake from T cells, leading to improved function within the tumors and delayed tumor growth. CONCLUSIONS: Our results set forth the importance of skin DC in cancer immunotherapy, and demonstrates that restoring DC function is key to enhancing tumor immunogenicity and subsequently responsiveness to checkpoint blockade therapy.


Assuntos
Anticorpos/administração & dosagem , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Inibidores de Checkpoint Imunológico/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Poli I-C/administração & dosagem , Receptor de Morte Celular Programada 1/metabolismo , Pele/citologia , Animais , Anticorpos/farmacologia , Antígenos CD40/antagonistas & inibidores , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Estadiamento de Neoplasias , Poli I-C/farmacologia , Receptor de Morte Celular Programada 1/genética , Análise de Sequência de RNA , Pele/efeitos dos fármacos , Pele/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa