Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34215692

RESUMO

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Assuntos
Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Solanum lycopersicum/imunologia , Proteínas de Arabidopsis/metabolismo , Biocatálise , Regulação da Expressão Gênica de Plantas , Gentisatos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Mutação/genética , Filogenia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Transcriptoma/genética , Regulação para Cima , Xanthomonas/fisiologia
2.
Phytopathology ; 112(8): 1640-1650, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35133857

RESUMO

Although cultivars possessing recessive resistance alleles provide effective control of bacterial spot of pepper (Capsicum annuum), the deployed resistance gene, bs5, is ineffective against Xanthomonas gardneri, one of the pathogenic species. Resistance against X. gardneri was identified in C. annuum accession PI 163192, and this study sought to characterize this novel resistance and to map the resistance gene(s) to the pepper genome. We crossed PI 163192 with the susceptible cultivar Early Calwonder (ECW) to develop resistant near-isogenic lines (NILs) of ECW, designated ECW80R. The novel resistance in ECW80R was determined to be quantitative, recessively inherited, and non-hypersensitive-response causing, and inhibits lesion expansion and chlorosis. Presence of the resistance in NILs decreased the in planta bacterial population by ninefold compared with ECW. Bulked segregant analysis of resistant and susceptible individuals from an F2 population using whole genome single nucleotide polymorphisms identified a major resistance locus within an approximate 6-Mbp interval on the subtelomeric region of chromosome 11. We developed markers spanning this region and used these to genotype backcross F2 populations, which further delimited the resistance locus within a 2.3-Mbp interval. The novel resistance locus has been designated bs8. ECW80R and the linked markers developed in this study should prove useful for breeders seeking to advance this resistance into commercially relevant germplasm and for pyramiding bs8 with other resistance alleles such as bs5 and bs6. The allele bs8 will help prolong the durability of bacterial spot resistance in pepper and improve resistance to multiple species of Xanthomonas.


Assuntos
Capsicum , Xanthomonas , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética
3.
J Nematol ; 54(1): 20220018, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35975222

RESUMO

The Mi gene in tomato confers resistance to Meloidogyne javanica, M. incognita, and M. arenaria, the most common tropical root-knot nematode (RKN) species found in Florida. Fusarium wilt (Fol) is another major problem in Florida tomatoes which may interact with RKN and cause more plant damage. To study the interactions between RKN, Fusarium, and Mi in tomato, two greenhouse experiments were conducted. Both experiments used different isolines (with and without I-3 and Mi genes) of the tomato cultivar Tasti Lee®. In the first experiment, all four isolines were subjected to two levels of RKN (~10,000 eggs/pot and no eggs) and two levels of Fol (1000 cc soil with 1,000 cfu/g at planting and no Fol), both applied at planting. In the second experiment, the two isolines without I-3 were exposed to the same two levels of RKN as described above and three levels of Fol (50 ml Fol with 1×106 cfu/m at planting, at 10 DAT, and no Fol). Fol reduced root-knot infection and reproduction when both Fol and RKN were inoculated at planting but not when Fol was inoculated 10 days later. Plant damage from Fol was exacerbated in the presence of RKN, especially when both pathogens were present at planting. Isolines with I-3 grew better in Fol-inoculated soil but had no effect when Fol and RKN were both present. Isolines with Mi gene reduced RKN infection and reproduction but did not affect plant damage caused by Fol. In summary, while RKN reproduction was reduced in the presence of Fol, the overall plant damage was more severe when both pathogens were present.

4.
Theor Appl Genet ; 134(7): 2129-2140, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33786652

RESUMO

KEY MESSAGE: Reducing the size of the I-3 introgression resulted in eliminating linkage-drag contributing to increased sensitivity to bacterial spot and reduced fruit size. The I-7 gene was determined to have no effect on bacterial spot or fruit size, and germplasm is now available with both the reduced I-3 introgression and I-7. Tomato (Solanum lycopersicum) production is increasingly threatened by Fusarium wilt race 3 (Fol3) caused by the soilborne fungus, Fusarium oxysporum f. sp. lycopersici. Although host resistance based on the I-3 gene is the most effective management strategy, I-3 is associated with detrimental traits including reduced fruit size and increased bacterial spot sensitivity. Previous research demonstrated the association with bacterial spot is not due to the I-3 gene, itself, and we hypothesize that reducing the size of the I-3 introgression will remedy this association. Cultivars with I-7, an additional Fol3 resistance gene, are available but are not widely used commercially, and it is unclear whether I-7 also has negative horticultural associations. To characterize the effect of I-3 on fruit size, segregating populations were developed and evaluated, revealing that the large I-3 introgression decreased fruit size by approximately 21%. We reduced the I-3 introgression from 5 to 140 kb through successive recombinant screening and crossing efforts. The reduced I-3 introgression and I-7 were then separately backcrossed into elite Florida breeding lines and evaluated for effects on bacterial spot sensitivity and fruit size across multiple seasons. The reduced I-3 introgression resulted in significantly less bacterial spot and larger fruit size than the large introgression, and it had no effect on these horticultural characteristics compared with Fol3 susceptibility. I-7 was also found to have no effect on these traits compared to Fol3 susceptibility. Together, these efforts support the development of superior Fol3-resistant cultivars and more durable resistance against this pathogen.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Introgressão Genética , Doenças das Plantas/genética , Solanum lycopersicum/genética , Frutas , Genes de Plantas , Ligação Genética , Solanum lycopersicum/microbiologia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Xanthomonas/patogenicidade
5.
Theor Appl Genet ; 132(5): 1543-1554, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30758531

RESUMO

KEY MESSAGE: Ty-6 is a major resistance gene on chromosome 10 of tomato that provides resistance against monopartite and bipartite begomoviruses and complements resistance conferred by the known Ty-3 and ty-5 genes. Resistance to monopartite and bipartite begomoviruses is an important breeding objective for cultivated tomato. Several begomovirus resistance genes have been introgressed from related Solanum species and are available for breeding purposes. In the present study, we mapped an additional locus, Ty-6, to chromosome 10 of tomato. Ty-6 is effective against both monopartite Tomato yellow leaf curl virus (TYLCV) and bipartite Tomato mottle virus (ToMoV). Gene action is incomplete dominance, with an intermediate resistance response when Ty-6 is heterozygous. Analysis of populations segregating for Ty-6 along with Ty-3 or ty-5 indicates that the highest level of resistance against TYLCV is attained when Ty-6 is combined with an additional resistance allele. Our results also demonstrate that ty-5 is ineffective against ToMoV. Although multiple SNPs linked to Ty-6 were identified and can be used for breeding purposes, none of these were consistently polymorphic between Ty-6 and ty-6 breeding lines. Further research is underway to generate resequencing data for several Ty-6 inbred lines for the discovery of additional sequence polymorphisms that can be used for fine mapping and characterizing the Ty-6 locus.


Assuntos
Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/virologia , Solanum lycopersicum/genética , Begomovirus , Mapeamento Cromossômico , Solanum lycopersicum/virologia , Doenças das Plantas/genética , Locos de Características Quantitativas
6.
Theor Appl Genet ; 131(1): 145-155, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986627

RESUMO

KEY MESSAGE: The negative association between the I - 3 gene and increased sensitivity to bacterial spot is due to linkage drag (not pleiotropy) and may be remedied by reducing the introgression size. Fusarium wilt is one of the most serious diseases of tomato (Solanum lycopersicum L.) throughout the world. There are three races of the pathogen (races 1, 2 and 3), and the deployment of three single, dominant resistance genes corresponding to each of these has been the primary means of controlling the disease. The I-3 gene was introgressed from S. pennellii and confers resistance to race 3. Although I-3 provides effective control, it is negatively associated with several horticultural traits, including increased sensitivity to bacterial spot disease (Xanthomonas spp.). To test the hypothesis that this association is due to linkage with unfavorable alleles rather than to pleiotropy, we used a map-based approach to develop a collection of recombinant inbred lines varying for portions of I-3 introgression. Progeny of recombinants were evaluated for bacterial spot severity in the field for three seasons, and disease severities were compared between I-3 introgression haplotypes for each recombinant. Results indicated that increased sensitivity to bacterial spot is not associated with the I-3 gene, but rather with an upstream region of the introgression. A survey of public and private inbred lines and hybrids indicates that the majority of modern I-3 germplasm contains a similarly sized introgression for which the negative association with bacterial spot likely persists. In light of this, it is expected that the development and utilization of a reduced I-3 introgression will significantly improve breeding efforts for resistance to Fusarium wilt race 3.


Assuntos
Resistência à Doença/genética , Ligação Genética , Doenças das Plantas/genética , Solanum lycopersicum/genética , Alelos , Fusarium , Marcadores Genéticos , Genótipo , Haplótipos , Solanum lycopersicum/microbiologia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Xanthomonas
7.
Phytopathology ; 108(12): 1402-1411, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29923802

RESUMO

Field trials were conducted at two locations in Florida to evaluate transgenic tomato expressing the ELONGATION FACTOR TU RECEPTOR (EFR) gene from Arabidopsis thaliana, the Bs2 gene from pepper, or both Bs2 and EFR (Bs2/EFR) for managing bacterial wilt caused by Ralstonia solanacearum and bacterial spot caused by Xanthomonas perforans. Expression of EFR or Bs2/EFR in the susceptible genotype Fla. 8000 significantly reduced bacterial wilt incidence (50 to 100%) and increased total yield (57 to 114%) relative to lines expressing only Bs2 or the nontransformed Fla. 8000 control, although the marketable yield was not significantly affected. Following harvest, surviving symptomatic and nonsymptomatic plants were assessed for colonization by R. solanacearum. There were no significant differences in the population at the lower stem. Interestingly, in the middle stem, no bacteria could be recovered from EFR or Bs2/EFR lines but viable bacterial populations were recovered from Bs2 and nontransformed control lines at 102 to 105 CFU/g of stem tissue. In growth-chamber experiments, the EFR transgenic tomato lines were found to be effective against seven different R. solanacearum strains isolated from the southeastern United States, indicating utility across the southeastern United States. In all of the bacterial spot trials, EFR and Bs2/EFR lines had significantly reduced disease severity (22 to 98%) compared with the Fla. 8000 control. The marketable and total yield of Bs2/EFR were significantly higher (43 to 170%) than Fla. 8000 control in three of four field trials. These results demonstrate for the first time the potential of using the EFR gene for field management of bacterial wilt and bacterial spot diseases of tomato.


Assuntos
Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Solanum lycopersicum/genética , Xanthomonas/fisiologia , Proteínas de Arabidopsis/genética , Florida , Expressão Gênica , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Receptores de Reconhecimento de Padrão/genética
8.
Plant Physiol ; 168(1): 222-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736208

RESUMO

Evidence is compelling in support of a naturally occurring epigenetic influence on phenotype expression in land plants, although discerning the epigenetic contribution is difficult. Agriculturally important attributes like heterosis, inbreeding depression, phenotypic plasticity, and environmental stress response are thought to have significant epigenetic components, but unequivocal demonstration of this is often infeasible. Here, we investigate gene silencing of a single nuclear gene, MutS HOMOLOG1 (MSH1), in the tomato (Solanum lycopersicum) 'Rutgers' to effect developmental reprogramming of the plant. The condition is heritable in subsequent generations independent of the MSH1-RNA interference transgene. Crossing these transgene-null, developmentally altered plants to the isogenic cv Rutgers wild type results in progeny lines that show enhanced, heritable growth vigor under both greenhouse and field conditions. This boosted vigor appears to be graft transmissible and is partially reversed by treatment with the methylation inhibitor 5-azacytidine, implying the influence of mobile, epigenetic factors and DNA methylation changes. These data provide compelling evidence for the feasibility of epigenetic breeding in a crop plant.


Assuntos
Cruzamento , Epigênese Genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Adaptação Fisiológica/genética , Arabidopsis/genética , Cruzamentos Genéticos , Metilação de DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Padrões de Herança/genética , Fenótipo , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Plântula/crescimento & desenvolvimento , Análise de Sequência de RNA , Supressão Genética , Transgenes
9.
PLoS Genet ; 9(3): e1003399, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555305

RESUMO

Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants.


Assuntos
Begomovirus , Resistência à Doença/genética , RNA Polimerase Dependente de RNA , Solanum lycopersicum , Alelos , Begomovirus/genética , Begomovirus/patogenicidade , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/virologia , RNA/genética , Interferência de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
10.
BMC Plant Biol ; 14: 287, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25348801

RESUMO

BACKGROUND: Decades of intensive tomato breeding using wild-species germplasm have resulted in the genomes of domesticated germplasm (Solanum lycopersicum) being intertwined with introgressions from their wild relatives. Comparative analysis of genomes among cultivated tomatoes and wild species that have contributed genetic variation can help identify desirable genes, such as those conferring disease resistance. The ability to identify introgression position, borders, and contents can reveal ancestral origins and facilitate harnessing of wild variation in crop breeding. RESULTS: Here we present the whole-genome sequences of two tomato inbreds, Gh13 and BTI-87, both carrying the begomovirus resistance locus Ty-3 introgressed from wild tomato species. Introgressions of different sizes on chromosome 6 of Gh13 and BTI-87, both corresponding to the Ty-3 region, were identified as from a source close to the wild species S. chilense. Other introgressions were identified throughout the genomes of the inbreds and showed major differences in the breeding pedigrees of the two lines. Interestingly, additional large introgressions from the close tomato relative S. pimpinellifolium were identified in both lines. Some of the polymorphic regions were attributed to introgressions in the reference Heinz 1706 genome, indicating wild genome sequences in the reference tomato genome. CONCLUSIONS: The methods developed in this work can be used to delineate genome introgressions, and subsequently contribute to development of molecular markers to aid phenotypic selection, fine mapping and discovery of candidate genes for important phenotypes, and for identification of novel variation for tomato improvement. These universal methods can easily be applied to other crop plants.


Assuntos
Begomovirus/genética , Variação Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Solanum/genética , Sequência de Bases , Mapeamento Cromossômico , Resistência à Doença , Genótipo , Endogamia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Solanum/imunologia , Solanum/virologia
11.
Science ; 382(6668): 315-320, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856609

RESUMO

Epistasis between genes is traditionally studied with mutations that eliminate protein activity, but most natural genetic variation is in cis-regulatory DNA and influences gene expression and function quantitatively. In this study, we used natural and engineered cis-regulatory alleles in a plant stem-cell circuit to systematically evaluate epistatic relationships controlling tomato fruit size. Combining a promoter allelic series with two other loci, we collected over 30,000 phenotypic data points from 46 genotypes to quantify how allele strength transforms epistasis. We revealed a saturating dose-dependent relationship but also allele-specific idiosyncratic interactions, including between alleles driving a step change in fruit size during domestication. Our approach and findings expose an underexplored dimension of epistasis, in which cis-regulatory allelic diversity within gene regulatory networks elicits nonlinear, unpredictable interactions that shape phenotypes.


Assuntos
Epistasia Genética , Frutas , Solanum lycopersicum , Alelos , Frutas/anatomia & histologia , Frutas/genética , Variação Genética , Genótipo , Fenótipo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Dosagem de Genes
12.
Front Plant Sci ; 14: 1061803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275256

RESUMO

Bacterial spot caused by Xanthomonas euvesicatoria is a major disease of pepper (Capsicum annuum L.) in warm and humid production environments. Use of genetically resistant cultivars is an effective approach to manage bacterial spot. Two recessive resistance genes, bs5 and bs6, confer non-race-specific resistance against bacterial spot. The objective of our study was to map these two loci in the pepper genome. We used a genotyping-by-sequencing approach to initially map the position of the two resistances. Segregating populations for bs5 and bs6 were developed by crossing susceptible Early CalWonder (ECW) with near-isogenic lines ECW50R (bs5 introgression) or ECW60R (bs6 introgression). Following fine-mapping, bs5 was delimited to a ~535 Kbp interval on chromosome 3, and bs6 to a ~666 Kbp interval in chromosome 6. We identified 14 and 8 candidate resistance genes for bs5 and bs6, respectively, based on predicted protein coding polymorphisms between ECW and the corresponding resistant parent. This research enhances marker-assisted selection of bs5 and bs6 in breeding programs and is a crucial step towards elucidating the molecular mechanisms underlying the resistances.

13.
Plant J ; 68(6): 1093-103, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883550

RESUMO

Tomato yellow leaf curl disease, a devastating disease of Solanum lycopersicum (tomato), is caused by a complex of begomoviruses generally referred to as Tomato yellow leaf curl virus (TYLCV). Almost all breeding for TYLCV resistance has been based on the introgression of the Ty-1 resistance locus derived from Solanum chilense LA1969. Knowledge about the exact location of Ty-1 on tomato chromosome 6 will help in understanding the genomic organization of the Ty-1 locus. In this study, we analyze the chromosomal rearrangement and recombination behavior of the chromosomal region where Ty-1 is introgressed. Nineteen markers on tomato chromosome 6 were used in F(2) populations obtained from two commercial hybrids, and showed the presence of a large introgression in both. Fluorescence in situ hybridization (FISH) analysis revealed two chromosomal rearrangements between S. lycopersicum and S. chilense LA1969 in the Ty-1 introgression. Furthermore, a large-scale recombinant screening in the two F(2) populations was performed, and 30 recombinants in the Ty-1 introgression were identified. All recombination events were located on the long arm beyond the inversions, showing that recombination in the inverted region was absent. Disease tests on progenies of informative recombinants with TYLCV mapped Ty-1 to the long arm between markers MSc05732-4 and MSc05732-14, an interval overlapping with the reported Ty-3 region, which led to the indication that Ty-1 and Ty-3 may be allelic. With this study we prove that FISH can be used as a diagnostic tool to aid in the accurate mapping of genes that were introgressed from wild species into cultivated tomato.


Assuntos
Begomovirus/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Rearranjo Gênico , Genes de Plantas , Doenças das Plantas/genética , Solanum/genética , Mapeamento Cromossômico/métodos , Hibridização in Situ Fluorescente , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Recombinação Genética , Solanum/virologia
14.
Plant Direct ; 6(8): e422, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949955

RESUMO

Reduced plant height due to shortened stems is beneficial for improving crop yield potential, better resilience to biotic/abiotic stresses, and rapid crop producer adoption of the agronomic and management practices. Breeding tomato plants with a reduced height, however, poses a particular challenge because this trait is often associated with a significant fruit size (weight) reduction. The tomato BRACHYTIC (BR) locus controls plant height. Genetic mapping and genome assembly revealed three flowering promoting factor 1 (FPF1) genes located within the BR mapping interval, and a complete coding sequence deletion of the telomere proximal FPF1 (Solyc01g066980) was found in the br allele but not in BR. The knock-out of Solyc01g066980 in BR large-fruited fresh-market tomato reduced the height and fruit yield, but the ability to produce large size fruits was retained. However, concurrent yield evaluation of a pair of sister lines with or without the br allele revealed that artificial selection contributes to commercially acceptable yield potential in br tomatoes. A network analysis of gene-expression patterns across genotypes, tissues, and the gibberellic acid (GA) treatment revealed that member(s) of the FPF1 family may play a role in the suppression of the GA biosynthesis in roots and provided a framework for identifying the responsible molecular signaling pathways in br-mediated phenotypic changes. Lastly, mutations of br homologs also resulted in reduced height. These results shed light on the genetic and physiological mechanisms by which the br allele alters tomato architecture.

15.
Front Plant Sci ; 13: 948656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589098

RESUMO

The appropriate selection of rootstock-scion combinations to improve yield and fully realize grafting benefits requires an in-depth understanding of rootstock-scion synergy. Toward this end, we grafted two determinate-type scions [grape tomato ('BHN 1022') and beefsteak tomato ('Skyway')] onto four rootstocks with different characteristics to examine plant growth, yield performance, biomass production, and fruit mineral nutrient composition. The study was conducted during two growing seasons (spring and fall plantings in Florida) under organic production in high tunnels with the non-grafted scions as controls. Rootstocks had previously been designated as either "generative" ('Estamino') or "vegetative" ('DR0141TX') by some commercial suppliers or had not been characterized ['RST-04-106-T' and 'SHIELD RZ F1 (61-802)']. Also, 'Estamino', 'DR0141TX', and 'RST-04-106-T' had been described as more vigorous than 'SHIELD RZ F1 (61-802)'. In both planting seasons (with low levels of soilborne disease pressure), the "vegetative" and "generative" rootstocks increased marketable and total fruit yields for both scions except for the beefsteak tomato grafted with the "vegetative" rootstock in fall planting. Positive effects of 'RST-04-106-T' on fruit yield varied with scions and planting seasons, and were most manifested when grafted with the beefsteak tomato scion in fall planting. 'SHIELD RZ F1 (61-802)' led to similar yields as the non-grafted controls except for grafting with the grape tomato scion in fall planting. For vegetative and fruit biomass, both the "vegetative" and "generative" rootstocks had positive impacts except for the beefsteak tomato in fall planting. For fruit mineral composition, the "vegetative" and "generative" rootstocks, both highly vigorous, consistently elevated fruit P, K, Ca, Zn, and Fe contents on a dry weight basis, whereas the other rootstocks did not. Overall, although the more vigorous rootstocks enhanced tomato plant productivity and fruit minerals, the evidence presented here does not support the suggestion that the so-called "vegetative" and "generative" rootstocks have different impacts on tomato scion yield, biomass production, or fruit mineral contents. More studies with different production systems and environmental conditions as well as contrasting scion genotypes are needed to further categorize the impacts of rootstocks with different vigor and other characteristics on plant biomass production and their implications on fruit yield development.

16.
Front Plant Sci ; 13: 948556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589104

RESUMO

Previous studies of tomato rootstock effects on fruit quality have yielded mixed results, and few attempts have been made to systematically examine the association between rootstock characteristics and tomato fruit quality. In this study, grape tomato ('BHN 1022') and beefsteak tomato ('Skyway') were grafted onto four rootstocks ['Estamino' (vigorous and "generative"), 'DR0141TX' (vigorous and "vegetative"), 'RST-04-106-T' (uncharacterized), and 'SHIELD RZ F1 (61-802)' (mid-vigor, uncharacterized)] and compared to non-grafted scion controls for two growing seasons (Spring and Fall in Florida) in organically managed high tunnels. In both seasons and for both scions, the two vigorous rootstocks, regardless of their designation as "vegetative" ('DR0141TX') or "generative" ('Estamino'), exhibited negative impacts on dry matter content, soluble solids content (SSC), SSC/titratable acidity (TA), lycopene, and ascorbic acid contents. Similar effects on fruit dry matter content and SSC were also observed with the 'RST-04-106-T' rootstock, although little to no change was seen with grafting onto 'SHIELD RZ F1 (61-802)'. Further studies are needed to elucidate the impact of rootstock vigor on tomato volatile profiles and consumer sensory acceptability in order to better determine whether any of the documented effects are of practical importance. On the other hand, the evident effects of scion cultivar and planting season on fruit quality were observed in most of the measurements. The scion by rootstock interaction affected fruit length, firmness, pH, and total phenolic content, while the planting season by rootstock interaction impacted fruit firmness, pH, total antioxidant capacity, and ascorbic acid and lycopene contents. The multivariate separation pattern of planting season, scion, and rootstock treatments as revealed by the canonical discriminant analysis further indicated that the influence of scion cultivar and planting season on tomato fruit quality could be much more pronounced than the rootstock effects. The fruit color (C* and H°), length and width, SSC, pH, total antioxidant capacity, ascorbic acid, and lycopene contents were the main attributes distinguishing different scion-planting season groups.

17.
Phytopathology ; 101(10): 1217-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21916626

RESUMO

Bacterial spot of tomato (Solanum lycopersicum) is caused by four species of Xanthomonas. The disease causes significant yield losses and a reduction in fruit quality. Physiological races have been described with tomato race 3 (T3) corresponding to strains of Xanthomonas perforans. The breeding line Hawaii 7981 (hereafter H7981) shows a hypersensitive reaction (HR) to race T3 strains conditioned by the interaction of the host resistance locus Xv3 and the bacterial effector avrXv3. The Xv3 gene is required for H7981-derived resistance to be effective under field conditions, though its expression is subject to genetic background. The segregation of HR in F(2) populations derived from H7981 crossed to processing tomato parents OH88119 and OH7870 was studied in 331 progeny, with the two independent crosses providing validation. We screened 453 simple-sequence repeat, insertion/deletion, and single-nucleotide polymorphism markers and identified 44 polymorphic markers each for the OH88119 and OH7870 populations covering 84.6 and 73.3% of the genome, respectively, within 20 centimorgans (cM). Marker-trait analysis using all polymorphic markers demonstrated that Xv3-mediated resistance maps to chromosome 11 in the two independent crosses. Allelism tests were conducted in crosses between lines carrying Xv3 derived from H7981, Rx-4 derived from plant introduction (PI) 128216, and resistance derived from PI 126932. These allelism tests suggested that the loci conditioning HR to race T3 strains are linked within 0.1 cM, are allelic, or are the same gene.


Assuntos
Mapeamento Cromossômico/métodos , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Locos de Características Quantitativas/genética , Solanum lycopersicum/genética , Xanthomonas/fisiologia , Alelos , Cruzamento , Genes de Plantas , Teste de Complementação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Solanum lycopersicum/microbiologia , Repetições Minissatélites , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
18.
Genes (Basel) ; 12(11)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34828278

RESUMO

For over a century, breeders have worked to develop tomato (Solanum lycopersicum) cultivars with resistance to Fusarium wilt (Fol) caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici. Host resistance is the most effective strategy for the management of this disease. For each of the three Fol races, resistance has been introgressed from wild tomato species, predominately in the form of R genes. The I, I-2, I-3, and I-7 R genes have each been identified, as well as the corresponding Avr effectors in the fungus with the exception of Avr7. The mechanisms by which the R gene protein products recognize these effectors, however, has not been elucidated. Extensive genetic mapping, gene cloning, and genome sequencing efforts support the development of tightly-linked molecular markers, which greatly expedite tomato breeding and the development of elite, Fol resistant cultivars. These resources also provide important tools for pyramiding resistance genes and should support the durability of host resistance.


Assuntos
Resistência à Doença , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Solanum lycopersicum/crescimento & desenvolvimento , Produção Agrícola , Fusarium/patogenicidade , Introgressão Genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Proteínas de Plantas/genética
19.
Hortic Res ; 8(1): 138, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075031

RESUMO

Within large-fruited germplasm, fruit size is influenced by flat and globe shapes. Whereas flat fruits are smaller and retain better marketability, globe fruits are larger and more prone to cuticle disorders. Commercial hybrids are often developed from crosses between flat and globe shaped parents because flat shape is thought to be dominant and fruit size intermediate. The objectives of this study were to determine the genetic basis of flat/globe fruit shape in large-fruited fresh-market tomato germplasm and to characterize its effects on several fruit traits. Twenty-three advanced single plant selections from the Fla. 8000 × Fla. 8111B cross were selectively genotyped using a genome-wide SNP array, and inclusive composite interval mapping identified a single locus on the upper arm of chromosome 12 associated with shape, which we termed globe. A 238-plant F2 population and 69 recombinant inbred lines for this region from the same parents delimited globe to approximately 392-kilobases. A germplasm survey representing materials from multiple breeding programs demonstrated that the locus explains the flat/globe shape broadly. A single base insertion in an exon of Solyc12g006860, a gene annotated as a brassinosteroid hydroxylase, segregated completely with shape in all populations tested. CRISPR/Cas9 knock out plants confirmed this gene as underlying the globe locus. In silico analysis of the mutant allele of GLOBE among 595 wild and domesticated accessions suggested that the allele arose very late in the domestication process. Fruit measurements in three genetic backgrounds evidenced that globe impacts fruit size and several fruit shape attributes, pedicel length/width, and susceptibility of fruit to weather check. The mutant allele of GLOBE appears mostly recessive for all traits except fruit size where it acts additively.

20.
Theor Appl Genet ; 121(7): 1275-87, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20563547

RESUMO

Bacterial spot of tomato (Solanum lycopersicum L.), caused by several Xanthomonas sp., is a serious but difficult disease to control by chemical means. Development of resistance has been hindered by emergence of races virulent to tomato, by the quantitative inheritance of resistance, and by a low correlation between seedling assays and resistance in the field. Resistance to multiple races, including race T4, has been described in the S. lycopersicum var. cerasiformae accession PI 114490. We used molecular markers to identify associations with quantitative trait loci (QTL) in an elite inbred backcross (IBC) population derived from OH 9242, PI 114490 and Fla. 7600, a breeding line with tomato accession Hawaii 7998 (H7998) in its pedigree. Race T4 resistance has also been described in the advanced breeding lines Fla. 8233, Fla. 8517, and Fla. 8326, and a selective genotyping approach was used to identify introgressions associated with resistance in segregating progeny derived from crosses with these lines. In the IBC population, loci on chromosomes 11 and 3, respectively, explained as much as 29.4 and 4.8% of resistance variation. Both these loci were also confirmed by selective genotyping: PI 114490 and H7998 alleles on chromosome 11 each provided resistance. The PI 114490 allele on chromosome 3 was confirmed in the Fla. 8517 population, and an allele of undetermined descent was confirmed at this locus in the Fla. 8326 population. A chromosome 12 allele was associated with susceptibility in the Fla. 8517 population. Additional loci contributing minor effects were also implicated in the IBC population or by selective genotyping. Selection for the major QTL in a marker-directed phenotyping approach should significantly improve the efficiency of breeding for resistance to bacterial spot race T4, although as yet undetected QTL would be necessary to carry out strict marker assisted selection.


Assuntos
Imunidade Vegetal/genética , Locos de Características Quantitativas/genética , Solanum lycopersicum/genética , Xanthomonas/patogenicidade , Alelos , Cruzamento , Mapeamento Cromossômico , Marcadores Genéticos , Genótipo , Solanum lycopersicum/microbiologia , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa