RESUMO
Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Genômica , Neoplasias Encefálicas/patologiaRESUMO
Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
Prolonged grief disorder (PGD) is associated with impairments in cognitive functioning, but the neuropsychological correlates of early grief in older adults are poorly understood. This preliminary study cross-sectionally examined neuropsychological functioning in bereaved adults with high and low grief symptoms and a non-bereaved comparison sample and further explored the relationship between multidomain cognitive measures and grief severity. A total of ninety-three nondemented older adults (high grief: n = 44; low grief: n = 49) within 12 months post-bereavement and non-bereaved comparison participants (n = 43) completed neuropsychological battery including global and multiple domain-specific cognitive functioning. Linear regression models were used to analyze differences in multidomain cognitive measures between the groups and specifically examine the associations between cognitive performance and grief severity in the bereaved, after covariate adjustment, including depressive symptoms. Bereaved older adults with higher grief symptoms performed worse than those with lower symptoms and non-bereaved participants on executive functioning and attention and processing speed measures. In the bereaved, poorer executive functioning, attention and processing speed correlated with higher grief severity. Attention/processing speed-grief severity correlation was seen in those with time since loss ≤ 6 months, but not > 6 months. Intense early grief is characterised by poorer executive functioning, attention, and processing speed, resembling findings in PGD. The putative role of poorer cognitive functioning during early grief on the transition to integrated grief or the development of PGD remains to be elucidated.
RESUMO
INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.
Assuntos
Doença de Alzheimer , Resiliência Psicológica , Humanos , Doença de Alzheimer/patologia , Proteínas tau , Emaranhados Neurofibrilares/patologia , Imageamento por Ressonância Magnética , Peptídeos beta-AmiloidesRESUMO
We propose a unique, minimal assumption, approach based on variance analyses (compared with standard approaches) to investigate genetic influence on individual differences on the functional connectivity of the brain using 65 monozygotic and 65 dizygotic healthy young adult twin pairs' low-frequency oscillation resting state functional Magnetic Resonance Imaging (fMRI) data from the Human Connectome Project. Overall, we found high number of genetically-influenced functional (GIF) connections involving posterior to posterior brain regions (occipital/temporal/parietal) implicated in low-level processes such as vision, perception, motion, categorization, dorsal/ventral stream visuospatial, and long-term memory processes, as well as high number across midline brain regions (cingulate) implicated in attentional processes, and emotional responses to pain. We found low number of GIF connections involving anterior to anterior/posterior brain regions (frontofrontal > frontoparietal, frontotemporal, frontooccipital) implicated in high-level processes such as working memory, reasoning, emotional judgment, language, and action planning. We found very low number of GIF connections involving subcortical/noncortical networks such as basal ganglia, thalamus, brainstem, and cerebellum. In terms of sex-specific individual differences, individual differences in males were more genetically influenced while individual differences in females were more environmentally influenced in terms of the interplay of interactions of Task positive networks (brain regions involved in various task-oriented processes and attending to and interacting with environment), extended Default Mode Network (a central brain hub for various processes such as internal monitoring, rumination, and evaluation of self and others), primary sensorimotor systems (vision, audition, somatosensory, and motor systems), and subcortical/noncortical networks. There were >8.5-19.1 times more GIF connections in males than females. These preliminary (young adult cohort-specific) findings suggest that individual differences in the resting state brain may be more genetically influenced in males and more environmentally influenced in females; furthermore, standard approaches may suggest that it is more substantially nonadditive genetics, rather than additive genetics, which contribute to the differences in sex-specific individual differences based on this young adult (male and female) specific cohort. Finally, considering the preliminary cohort-specific results, based on standard approaches, environmental influences on individual differences may be substantially greater than that of genetics, for either sex, frontally and brain-wide. [Correction added on 10 May 2023, after first online publication: added: functional Magnetic Resonance Imaging. Added: individual differences in, twice. Added statement between furthermore based on standard approaches.].
Assuntos
Encéfalo , Conectoma , Feminino , Humanos , Masculino , Adulto Jovem , Gânglios da Base , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Conectoma/métodos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Tálamo , Gêmeos DizigóticosRESUMO
Temporal lobe epilepsy (TLE) has been conceptualized as focal disease with a discrete neurobiological focus and can respond well to targeted resection or ablation. In contrast, the neuro-cognitive deficits resulting from TLE can be widespread involving regions beyond the primary epileptic network. We hypothesize that this seemingly paradoxical findings can be explained by differences in connectivity between the primary epileptic region which is hyper-connected and its secondary influence on global connectome organization. This hypothesis is tested using regional and global graph theory metrics where we anticipate that regional mesial-temporal hyperconnectivity will be found and correlate with seizure frequency while global networks will be disorganized and be more closely associated with neuro-cognitive deficits. Resting-state fMRI was used to examine temporal lobe regional connectivity and global functional connectivity from 102 patients with TLE and 55 controls. Connectivity matrices were calculated for subcortical volumes and cortical parcellations. Graph theory metrics (global clustering coefficient (GCC), degree, closeness) were compared between groups and in relation to neuropsychological profiles and disease covariates using permutation testing and causal analysis. In TLE there was a decrease in GCC (pâ¯=â¯0.0345) associated with a worse neuropsychological profile (pâ¯=â¯0.0134). There was increased connectivity in the left hippocampus/amygdala (degree pâ¯=â¯0.0103, closeness pâ¯=â¯0.0104) and a decrease in connectivity in the right lateral temporal lobe (degree pâ¯=â¯0.0186, closeness pâ¯=â¯0.0122). A ratio between the hippocampus/amygdala and lateral temporal lobe-temporal lobe connectivity ratio (TLCR) revealed differences between TLE and controls for closeness (left pâ¯=â¯0.00149, right pâ¯=â¯0.0494) and for degree on left pâ¯=â¯0.00169; with trend on right pâ¯=â¯0.0567. Causal analysis suggested that "Epilepsy Activity" (seizure frequency, anti-seizure medications) was associated with increase in TLCR but not in GCC, while cognitive decline was associated with decreased GCC. These findings support the hypothesis that in TLE there is hyperconnectivity in the hippocampus/amygdala and hypoconnectivity in the lateral temporal lobe associated with "Epilepsy Activity." While, global connectome disorganization was associated with worse neuropsychological phenotype.
Assuntos
Conectoma , Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Lateralidade Funcional , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Lobo TemporalRESUMO
Neuroticism, a core personality trait characterized by a tendency towards experiencing negative affect, has been reported to be higher in people with temporal lobe epilepsy (TLE) compared with healthy individuals. Neuroticism is a known predictor of depression and anxiety, which also occur more frequently in people with TLE. The purpose of this study was to identify abnormalities in whole-brain resting-state functional connectivity in relation to neuroticism in people with TLE and to determine the degree of unique versus shared patterns of abnormal connectivity in relation to elevated symptoms of depression and anxiety. Ninety-three individuals with TLE (55 females) and 40 healthy controls (18 females) from the Epilepsy Connectome Project (ECP) completed measures of neuroticism, depression, and anxiety, which were all significantly higher in people with TLE compared with controls. Resting-state functional connectivity was compared between controls and groups with TLE with high and low neuroticism using analysis of variance (ANOVA) and t-test. In secondary analyses, the same analytics were performed using measures of depression and anxiety and the unique variance in resting-state connectivity associated with neuroticism independent of symptoms of depression and anxiety identified. Increased neuroticism was significantly associated with hyposynchrony between the right hippocampus and Brodmann area (BA) 9 (region of prefrontal cortex (PFC)) (pâ¯<â¯0.005), representing a unique relationship independent of symptoms of depression and anxiety. Hyposynchrony of connection between the right hippocampus and BA47 (anterior frontal operculum) was associated with high neuroticism and with higher depression and anxiety scores (pâ¯<â¯0.05), making it a shared abnormal connection for the three measures. In conclusion, increased neuroticism exhibits both unique and shared patterns of abnormal functional connectivity with depression and anxiety symptoms between regions of the mesial temporal and frontal lobe.
Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neuroticismo/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto , Conectoma/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Lobo Frontal/fisiopatologia , Lateralidade Funcional/fisiologia , Humanos , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Lobo Temporal/fisiopatologiaRESUMO
Behavioral and personality disorders in temporal lobe epilepsy (TLE) have been a topic of interest and controversy for decades, with less attention paid to alterations in normal personality structure and traits. In this investigation, core personality traits (the Big 5) and their neurobiological correlates in TLE were explored using the Neuroticism Extraversion Openness-Five Factor Inventory (NEO-FFI) and structural magnetic resonance imaging (MRI) through the Epilepsy Connectome Project (ECP). NEO-FFI scores from 67 individuals with TLE (34.6⯱â¯9.5â¯years; 67% women) were compared to 31 healthy controls (32.8⯱â¯8.9â¯years; 41% women) to assess differences in the Big 5 traits (agreeableness, openness, conscientiousness, neuroticism, and extraversion). Individuals with TLE showed significantly higher neuroticism, with no significant differences on the other traits. Neural correlates of neuroticism were then determined in participants with TLE including cortical and subcortical volumes. Distributed reductions in cortical gray matter volumes were associated with increased neuroticism. Subcortically, hippocampal and amygdala volumes were negatively associated with neuroticism. These results offer insight into alterations in the Big 5 personality traits in TLE and their brain-related correlates.
Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Neuroticismo , Inventário de Personalidade , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Epilepsia do Lobo Temporal/psicologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroticismo/fisiologia , Personalidade/fisiologiaRESUMO
Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes with different brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal magnetic resonance imaging to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, and multiple sclerosis, as well as their potential in a transdiagnostic framework, where neuroanatomical and neurobiological commonalities were assessed across diagnostic boundaries. Subsequently, we summarize relevant machine learning methodologies and their clinical interpretability. We discuss the potential clinical implications of the current findings and envision future research avenues. Finally, we discuss an emerging paradigm called dimensional neuroimaging endophenotypes. Dimensional neuroimaging endophenotypes dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into low-dimensional yet informative, quantitative brain phenotypic representations, serving as robust intermediate phenotypes (i.e., endophenotypes), presumably reflecting the interplay of underlying genetic, lifestyle, and environmental processes associated with disease etiology.
Assuntos
Encéfalo , Endofenótipos , Aprendizado de Máquina , Neuroimagem , Humanos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/fisiopatologia , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/fisiopatologia , Imageamento por Ressonância Magnética/métodosRESUMO
Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes that present significant differences in various brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal MRI to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, multiple sclerosis, as well as their potential in transdiagnostic settings. Subsequently, we summarize relevant machine learning methodologies and discuss an emerging paradigm which we call dimensional neuroimaging endophenotype (DNE). DNE dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into a low-dimensional yet informative, quantitative brain phenotypic representation, serving as a robust intermediate phenotype (i.e., endophenotype) largely reflecting underlying genetics and etiology. Finally, we discuss the potential clinical implications of the current findings and envision future research avenues.
RESUMO
The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .
Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Humanos , Encéfalo , Substância Cinzenta , Imageamento por Ressonância Magnética/métodos , Substância Branca/fisiologia , Análise da Randomização MendelianaRESUMO
BACKGROUND: Brain ageing is highly heterogeneous, as it is driven by a variety of normal and neuropathological processes. These processes may differentially affect structural and functional brain ageing across individuals, with more pronounced ageing (older brain age) during midlife being indicative of later development of dementia. Here, we examined whether brain-ageing heterogeneity in unimpaired older adults related to neurodegeneration, different cognitive trajectories, genetic and amyloid-beta (Aß) profiles, and to predicted progression to Alzheimer's disease (AD). METHODS: Functional and structural brain age measures were obtained for resting-state functional MRI and structural MRI, respectively, in 3460 cognitively normal individuals across an age range spanning 42-85 years. Participants were categorised into four groups based on the difference between their chronological and predicted age in each modality: advanced age in both (n = 291), resilient in both (n = 260) or advanced in one/resilient in the other (n = 163/153). With the resilient group as the reference, brain-age groups were compared across neuroimaging features of neuropathology (white matter hyperintensity volume, neuronal loss measured with Neurite Orientation Dispersion and Density Imaging, AD-specific atrophy patterns measured with the Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease index, amyloid burden using amyloid positron emission tomography (PET), progression to mild cognitive impairment and baseline and longitudinal cognitive measures (trail making task, mini mental state examination, digit symbol substitution task). FINDINGS: Individuals with advanced structural and functional brain-ages had more features indicative of neurodegeneration and they had poor cognition. Individuals with a resilient brain-age in both modalities had a genetic variant that has been shown to be associated with age of onset of AD. Mixed brain-age was associated with selective cognitive deficits. INTERPRETATION: The advanced group displayed evidence of increased atrophy across all neuroimaging features that was not found in either of the mixed groups. This is in line with biomarkers of preclinical AD and cerebrovascular disease. These findings suggest that the variation in structural and functional brain ageing across individuals reflects the degree of underlying neuropathological processes and may indicate the propensity to develop dementia in later life. FUNDING: The National Institute on Aging, the National Institutes of Health, the Swiss National Science Foundation, the Kaiser Foundation Research Institute and the National Heart, Lung, and Blood Institute.
RESUMO
Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50â¯000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27â¯402 individuals (mean [SD] age, 63.0 [8.3] years; 15â¯146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.
Assuntos
Envelhecimento , Encéfalo , Humanos , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Envelhecimento/genética , Envelhecimento/fisiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos de Coortes , Aprendizado ProfundoRESUMO
Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Estudo de Associação Genômica Ampla , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Masculino , Feminino , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Idoso , Encéfalo/patologia , Imageamento por Ressonância Magnética , Lobo Temporal/patologia , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Pessoa de Meia-IdadeRESUMO
Disease heterogeneity poses a significant challenge for precision diagnostics in both clinical and sub-clinical stages. Recent work leveraging artificial intelligence (AI) has offered promise to dissect this heterogeneity by identifying complex intermediate phenotypes - herein called dimensional neuroimaging endophenotypes (DNEs) - which subtype various neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×1-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs and their polygenic risk scores significantly improved the prediction accuracy for 14 systemic disease categories and mortality. These findings underscore the potential of the nine DNEs to identify individuals at a high risk of developing the four brain diseases during preclinical stages for precision diagnostics. All results are publicly available at: http://labs.loni.usc.edu/medicine/.
RESUMO
The complex biological mechanisms underlying human brain aging remain incompletely understood, involving multiple body organs and chronic diseases. In this study, we used multimodal magnetic resonance imaging and artificial intelligence to examine the genetic architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557 European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-wide significance (P-value<5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 5' untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96×10-2) and AD on WM-BAG (odds ratio=1.04 [1.02, 1.05], P-value=7.18×10-5). Overall, our results provide valuable insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal: https://labs.loni.usc.edu/medicine.
RESUMO
Variability in the relationship of tau-based neurofibrillary tangles (T) and degree of neurodegeneration (N) in Alzheimer's Disease (AD) is likely attributable to the non-specific nature of N, which is also modulated by such factors as other co-pathologies, age-related changes, and developmental differences. We studied this variability by partitioning patients within the Alzheimer's continuum into data-driven groups based on their regional T-N dissociation, which reflects the residuals after the effect of tau pathology is "removed". We found six groups displaying distinct spatial T-N mismatch and thickness patterns despite similar tau burden. Their T-N patterns resembled the neurodegeneration patterns of non-AD groups partitioned on the basis of z-scores of cortical thickness alone and were similarly associated with surrogates of non-AD factors. In an additional sample of individuals with antemortem imaging and autopsy, T-N mismatch was associated with TDP-43 co-pathology. Finally, T-N mismatch training was then applied to a separate cohort to determine the ability to classify individual patients within these groups. These findings suggest that T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability to Alzheimer's disease.
RESUMO
Importance: Autism spectrum disorder (ASD) is associated with significant clinical, neuroanatomical, and genetic heterogeneity that limits precision diagnostics and treatment. Objective: To assess distinct neuroanatomical dimensions of ASD using novel semisupervised machine learning methods and to test whether the dimensions can serve as endophenotypes also in non-ASD populations. Design, Setting, and Participants: This cross-sectional study used imaging data from the publicly available Autism Brain Imaging Data Exchange (ABIDE) repositories as the discovery cohort. The ABIDE sample included individuals diagnosed with ASD aged between 16 and 64 years and age- and sex-match typically developing individuals. Validation cohorts included individuals with schizophrenia from the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) consortium and individuals from the UK Biobank to represent the general population. The multisite discovery cohort included 16 internationally distributed imaging sites. Analyses were performed between March 2021 and March 2022. Main Outcomes and Measures: The trained semisupervised heterogeneity through discriminative analysis models were tested for reproducibility using extensive cross-validations. It was then applied to individuals from the PHENOM and the UK Biobank. It was hypothesized that neuroanatomical dimensions of ASD would display distinct clinical and genetic profiles and would be prominent also in non-ASD populations. Results: Heterogeneity through discriminative analysis models trained on T1-weighted brain magnetic resonance images of 307 individuals with ASD (mean [SD] age, 25.4 [9.8] years; 273 [88.9%] male) and 362 typically developing control individuals (mean [SD] age, 25.8 [8.9] years; 309 [85.4%] male) revealed that a 3-dimensional scheme was optimal to capture the ASD neuroanatomy. The first dimension (A1: aginglike) was associated with smaller brain volume, lower cognitive function, and aging-related genetic variants (FOXO3; Z = 4.65; P = 1.62 × 10-6). The second dimension (A2: schizophrenialike) was characterized by enlarged subcortical volumes, antipsychotic medication use (Cohen d = 0.65; false discovery rate-adjusted P = .048), partially overlapping genetic, neuroanatomical characteristics to schizophrenia (n = 307), and significant genetic heritability estimates in the general population (n = 14â¯786; mean [SD] h2, 0.71 [0.04]; P < 1 × 10-4). The third dimension (A3: typical ASD) was distinguished by enlarged cortical volumes, high nonverbal cognitive performance, and biological pathways implicating brain development and abnormal apoptosis (mean [SD] ß, 0.83 [0.02]; P = 4.22 × 10-6). Conclusions and Relevance: This cross-sectional study discovered 3-dimensional endophenotypic representation that may elucidate the heterogeneous neurobiological underpinnings of ASD to support precision diagnostics. The significant correspondence between A2 and schizophrenia indicates a possibility of identifying common biological mechanisms across the 2 mental health diagnoses.
Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Feminino , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/patologia , Endofenótipos , Estudos Transversais , Reprodutibilidade dos Testes , Neuroanatomia , Encéfalo , Imageamento por Ressonância Magnética/métodosRESUMO
Neuroimaging biomarkers that distinguish between changes due to typical brain ageing and Alzheimer's disease are valuable for determining how much each contributes to cognitive decline. Supervised machine learning models can derive multivariate patterns of brain change related to the two processes, including the Spatial Patterns of Atrophy for Recognition of Alzheimer's Disease (SPARE-AD) and of Brain Aging (SPARE-BA) scores investigated herein. However, the substantial overlap between brain regions affected in the two processes confounds measuring them independently. We present a methodology, and associated results, towards disentangling the two. T1-weighted MRI scans of 4054 participants (48-95 years) with Alzheimer's disease, mild cognitive impairment (MCI), or cognitively normal (CN) diagnoses from the Imaging-based coordinate SysTem for AGIng and NeurodeGenerative diseases (iSTAGING) consortium were analysed. Multiple sets of SPARE scores were investigated, in order to probe imaging signatures of certain clinically or molecularly defined sub-cohorts. First, a subset of clinical Alzheimer's disease patients (n = 718) and age- and sex-matched CN adults (n = 718) were selected based purely on clinical diagnoses to train SPARE-BA1 (regression of age using CN individuals) and SPARE-AD1 (classification of CN versus Alzheimer's disease) models. Second, analogous groups were selected based on clinical and molecular markers to train SPARE-BA2 and SPARE-AD2 models: amyloid-positive Alzheimer's disease continuum group (n = 718; consisting of amyloid-positive Alzheimer's disease, amyloid-positive MCI, amyloid- and tau-positive CN individuals) and amyloid-negative CN group (n = 718). Finally, the combined group of the Alzheimer's disease continuum and amyloid-negative CN individuals was used to train SPARE-BA3 model, with the intention to estimate brain age regardless of Alzheimer's disease-related brain changes. The disentangled SPARE models, SPARE-AD2 and SPARE-BA3, derived brain patterns that were more specific to the two types of brain changes. The correlation between the SPARE-BA Gap (SPARE-BA minus chronological age) and SPARE-AD was significantly reduced after the decoupling (r = 0.56-0.06). The correlation of disentangled SPARE-AD was non-inferior to amyloid- and tau-related measurements and to the number of APOE ε4 alleles but was lower to Alzheimer's disease-related psychometric test scores, suggesting the contribution of advanced brain ageing to the latter. The disentangled SPARE-BA was consistently less correlated with Alzheimer's disease-related clinical, molecular and genetic variables. By employing conservative molecular diagnoses and introducing Alzheimer's disease continuum cases to the SPARE-BA model training, we achieved more dissociable neuroanatomical biomarkers of typical brain ageing and Alzheimer's disease.
RESUMO
Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional machine learning methods is that they typically model, learn and infer from data using a basis of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein we propose a novel method, "Multi-scAle heteroGeneity analysIs and Clustering" (MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to understand the conditions under which the clustering model can estimate true heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N = 4403). We then applied MAGIC to imaging data from Alzheimer's disease (ADNI, N = 1728) and schizophrenia (PHENOM, N = 1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed or should be taken with caution. The code of the proposed method is publicly available at https://github.com/anbai106/MAGIC.