Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 120(21): 4891-4902, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34529946

RESUMO

Immune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood. Previous results suggest that basic side chains present at the membrane interface on the Tim proteins might facilitate association with additional anionic lipids including but not necessarily limited to PS. We, therefore, performed a comparative quantitative analysis of the binding of the murine Tim1, Tim3, and Tim4, to synthetic anionic phospholipid membranes under physiologically relevant conditions. X-ray reflectivity and vesicle binding studies were used to compare the water-soluble domain of Tim3 with results previously obtained for Tim1 and Tim4. Although a calcium link was essential for all three proteins, the three homologs differed in how they balance the hydrophobic and electrostatic interactions driving membrane association. The proteins also varied in their sensing of phospholipid chain unsaturation and showed different degrees of cooperativity in their dependence on bilayer PS concentration. Surprisingly, trace amounts of anionic phosphatidic acid greatly strengthened the bilayer association of Tim3 and Tim4, but not Tim1. A novel mathematical model provided values for the binding parameters and illuminated the complex interplay among ligands. In conclusion, our results provide a quantitative description of the contrasting selectivity used by three Tim proteins in the recognition of phospholipids presented on target cell surfaces. This paradigm is generally applicable to the analysis of the binding of peripheral proteins to target membranes through the heterotropic cooperative interactions of multiple ligands.


Assuntos
Proteínas de Membrana , Mucinas , Animais , Receptor Celular 1 do Vírus da Hepatite A , Membranas , Camundongos , Fosfatidilserinas
2.
Langmuir ; 34(43): 13000-13005, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30303390

RESUMO

Spherical nanoparticle-supported lipid bilayers (SSLBs) combine precision nanoparticle engineering with biocompatible interfaces for various applications, ranging from drug delivery platforms to structural probes for membrane proteins. Although the bulk, spontaneous assembly of vesicles and larger silica nanoparticles (>100 nm) robustly yields SSLBs, it will only occur with low charge density vesicles for smaller nanoparticles (<100 nm), a fundamental barrier in increasing SSLB utility and efficacy. Here, through whole mount and cryogenic transmission electron microscopy, we demonstrate that mixing osmotically loaded vesicles with smaller nanoparticles robustly drives the formation of SSLBs with high membrane charge density (up to 60% anionic lipid or 50% cationic lipid). We show that the osmolyte load necessary for SSLB formation is primarily a function of absolute membrane charge density and is not lipid headgroup-dependent, providing a generalizable, tunable approach toward bulk production of highly curved and charged SSLBs with various membrane compositions.

3.
ACS Appl Bio Mater ; 2(4): 1413-1419, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026915

RESUMO

While it is generally accepted that neuronal protein α-synuclein binds to highly curved and highly charged lipid membranes, its biological function beyond binding remains unknown despite its fundamental link to Parkinson's disease. Herein, we utilize spherical nanoparticle lipid bilayers (SSLBs) to recapitulate the charge and curvature limit of membrane organelles with which α-synuclein associates and probe how α-synuclein affects SSLB structure and dynamics as a proxy for interorganelle interactions. Small-angle X-ray scattering and X-ray photon correlation spectroscopy reveal our SSLBs form aggregates that are clearly broken up by the addition of α-synuclein, a clear indication that α-synuclein confers steric stabilization to membrane surfaces.

4.
Rev Sci Instrum ; 88(3): 033112, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372410

RESUMO

Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm2 of interfacial area contains 2.38 ± 0.06 Ca2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr2+ at 68-5+6 Å2 per ion, consistent with the result published for the same dataset.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa