Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 195(4): 2694-2711, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38527800

RESUMO

Airspace or aerenchyma is crucial for plant development and acclimation to stresses such as hypoxia, drought, and nutritional deficiency. Although ethylene-mediated signaling cascades are known to regulate aerenchyma formation in stems and roots under hypoxic conditions, the precise mechanisms remain unclear. Moreover, the cellular dynamics underlying airspace formation in shoots are poorly understood. We investigated the stage-dependent structural dynamics of shoot aerenchyma in greater duckweed (Spirodela polyrhiza), a fast-growing aquatic herb with well-developed aerenchyma in its floating fronds. Using X-ray micro-computed tomography and histological analysis, we showed that the spatial framework of aerenchyma is established before frond volume increases, driven by cell division and expansion. The substomatal cavity connecting aerenchyma to stomata formed via programmed cell death (PCD) and was closely associated with guard cell development. Additionally, transcriptome analysis and pharmacological studies revealed that the organization of aerenchyma in greater duckweed is determined by the interplay between PCD and proliferation. This balance is governed by spatiotemporal regulation of phytohormone signaling involving ethylene, abscisic acid, and salicylic acid. Overall, our study reveals the structural dynamics and phytohormonal regulation underlying aerenchyma development in duckweed, improving our understanding of how plants establish distinct architectural arrangements. These insights hold the potential for wide-ranging application, not only in comprehending aerenchyma formation across various plant species but also in understanding how airspaces are formed within the leaves of terrestrial plants.


Assuntos
Araceae , Reguladores de Crescimento de Plantas , Brotos de Planta , Reguladores de Crescimento de Plantas/metabolismo , Araceae/genética , Araceae/crescimento & desenvolvimento , Araceae/fisiologia , Araceae/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia
2.
Brain ; 147(6): 2114-2127, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38227798

RESUMO

Mutations in the Microrchidia CW-type zinc finger 2 (MORC2) GHKL ATPase module cause a broad range of neuropathies, such as Charcot-Marie-Tooth disease type 2Z; however, the aetiology and therapeutic strategy are not fully understood. Previously, we reported that the Morc2a p.S87L mouse model exhibited neuropathy and muscular dysfunction through DNA damage accumulation. In the present study, we analysed the gene expression of Morc2a p.S87L mice and designated the primary causing factor. We investigated the pathological pathway using Morc2a p.S87L mouse embryonic fibroblasts and human fibroblasts harbouring MORC2 p.R252W. We subsequently assessed the therapeutic effect of gene therapy administered to Morc2a p.S87L mice. This study revealed that Morc2a p.S87L causes a protein synthesis defect, resulting in the loss of function of Morc2a and high cellular apoptosis induced by high hydroxyl radical levels. We considered the Morc2a GHKL ATPase domain as a therapeutic target because it simultaneously complements hydroxyl radical scavenging and ATPase activity. We used the adeno-associated virus (AAV)-PHP.eB serotype, which has a high CNS transduction efficiency, to express Morc2a or Morc2a GHKL ATPase domain protein in vivo. Notably, AAV gene therapy ameliorated neuropathy and muscular dysfunction with a single treatment. Loss-of-function characteristics due to protein synthesis defects in Morc2a p.S87L were also noted in human MORC2 p.S87L or p.R252W variants, indicating the correlation between mouse and human pathogenesis. In summary, CMT2Z is known as an incurable genetic disorder, but the present study demonstrated its mechanisms and treatments based on established animal models. This study demonstrates that the Morc2a p.S87L variant causes hydroxyl radical-mediated neuropathy, which can be rescued through AAV-based gene therapy.


Assuntos
Terapia Genética , Animais , Humanos , Camundongos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/terapia , Dependovirus/genética , Fibroblastos/metabolismo , Terapia Genética/métodos , Radical Hidroxila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa