Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Small ; 19(14): e2206126, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36517115

RESUMO

The Internet of Things era has promoted enormous research on sensors, communications, data fusion, and actuators. Among them, sensors are a prerequisite for acquiring the environmental information for delivering to an artificial data center to make decisions. The MXene-based sensors have aroused tremendous interest because of their extraordinary performances. In this review, the electrical, electronic, and optical properties of MXenes are first introduced. Next, the MXene-based sensors are discussed according to the sensing mechanisms such as electronic, electrochemical, and optical methods. Initially, biosensors are introduced based on chemiresistors and field-effect transistors. Besides, the wearable pressure sensor is demonstrated with piezoresistive devices. Third, the electrochemical methods include amperometry and electrochemiluminescence as examples. In addition, the optical approaches refer to surface plasmonic resonance and fluorescence resonance energy transfer. Moreover, the prospects are delivered of multimodal data fusion toward complicated human-like senses. Eventually, future opportunities for MXene research are conveyed in the new material discovery, structure design, and proof-of-concept devices.

2.
Clin Oral Investig ; 27(10): 5719-5736, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698630

RESUMO

OBJECTIVES: The oral cavity is an easily accessible unique environment and open system which is influenced by the oral fluids, microbiota, and nutrition. Little is known about the kinetics and dynamics of metabolic processes at the intraoral surfaces. Real-time monitoring of salivary biomarkers, e.g., glucose, lactate, fluoride, calcium, phosphate, and pH with intraoral sensors is therefore of major interest. The aim of this review is to overview the existing literature for intraoral saliva sensors. MATERIALS AND METHODS: A comprehensive literature search was performed to review the most relevant studies on intraoral saliva sensor technology. RESULTS: There is limited literature about the in situ saliva monitoring of salivary biomarkers. Bioadhesion and biofouling processes at the intraoral surfaces limit the performances of the sensors. Real-time, long-term, and continuous intraoral measurement of salivary metabolites remains challenging and needs further investigation as only few well-functioning sensors have been developed until today. Until now, there is no sensor that measures reliably beyond hours for any analyte other than glucose. CONCLUSIONS: Saliva's complex and dynamic structure as well as bioadhesion are key challenges and should be addressed in the future developments. Consequently, more studies that focus particularly on biofouling processes and interferential effects of the salivary matrix components on sensor surfaces are required. CLINICAL RELEVANCE: By monitoring fluids in the oral cavity, as the entrance to the digestive system, extensive information can be obtained regarding the effects of foods and preventive agents on the oral microbiota and the tooth surfaces. This may lead to a better understanding of strategies to modulate oral and general health.

3.
Nanotechnology ; 33(18)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35078155

RESUMO

Three-dimensional (3D) graphene with a high specific surface area and excellent electrical conductivity holds extraordinary potential for molecular gas sensing. Gas molecules adsorbed onto graphene serve as electron donors, leading to an increase in conductivity. However, several challenges remain for 3D graphene-based gas sensors, such as slow response and long recovery time. Therefore, research interest remains in the promotion of the sensitivity of molecular gas detection. In this study, we fabricate oxygen plasma-treated 3D graphene for the high-performance gas sensing of formaldehyde. We synthesize large-area, high-quality, 3D graphene over Ni foam by chemical vapor deposition and obtain freestanding 3D graphene foam after Ni etching. We compare three types of strategies-non-treatment, oxygen plasma, and etching in HNO3solution-for the posttreatment of 3D graphene. Eventually, the strategy for oxygen plasma-treated 3D graphene exceeds expectations, which may highlight the general gas sensing based on chemiresistors.

4.
Eur Phys J E Soft Matter ; 44(3): 39, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755813

RESUMO

Control over micromotors' motion is of high relevance for lab-on-a-chip and biomedical engineering, wherein such particles encounter complex microenvironments. Here, we introduce an efficient way to influence Janus micromotors' direction of motion and speed by modifying their surface properties and those of their immediate surroundings. We fabricated light-responsive Janus micromotors with positive and negative surface charge, both driven by ionic self-diffusiophoresis. These were used to observe direction-of-motion reversal in proximity to glass substrates for which we varied the surface charge. Quantitative analysis allowed us to extract the dependence of the particle velocity on the surface charge density of the substrate. This constitutes the first quantitative demonstration of the substrate's surface charge on the motility of the light-activated diffusiophoretic motors in water. We provide qualitative understanding of these observations in terms of osmotic flow along the substrate generated through the ions released by the propulsion mechanism. Our results constitute a crucial step in moving toward practical application of self-phoretic artificial micromotors.

5.
Mikrochim Acta ; 187(9): 520, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32856149

RESUMO

A flexible sensor is presented for electrochemical detection of ascorbic acid in sweat based on single-step modified gold microelectrodes. The modification consists of electrodeposition of alginate membrane with trapped CuO nanoparticles. The electrodes are fabricated at a thin polyimide support and the soft nature of the membrane can withstand mechanical stress beyond requirements for skin monitoring. After characterization of the membrane via optical and scanning electron microscopy and cyclic voltammetry, the oxidative properties of CuO are exploited toward ascorbic acid for amperometric measurement at micromolar levels in neutral buffer and acidic artificial sweat, at ultralow applied potential (- 5 mV vs. Au pseudo-reference electrode). Alternatively, measurement of the horizontal shift of redox peaks by cyclic voltammetry is also possible. Obtaining a limit of detection of 1.97 µM, sensitivity of 0.103 V log (µM)-1 of peak shift, and linear range of 10-150 µM, the effect of possible interfering species present in sweat is minimized, with no observable cross-reaction, thus maintaining a high degree of selectivity despite the absence of enzymes in the fabrication scheme. With a lateral flow approach for sample delivery, repeated measurements show recovery in few seconds, with relative standard deviation of about 20%, which can serve to detect increased loss or absence of vitamin, and yet be improved in future by optimized device designs. This sensor is envisioned as a promising component of wearable devices for e.g. non-invasive monitoring of micronutrient loss through sweat, comprising features of light weight, low cost, and easy fabrication needed for such application. Graphical Abstract Schematic depiction of the cyclic voltammetry signal change as the sweat flows over the sensor surface.

6.
Angew Chem Int Ed Engl ; 59(21): 8218-8224, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32039541

RESUMO

Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin-film through solvothermal method and on-solid-surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin-film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 µm), the reported thin-film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two-dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF-PP or 2D BECOF-PN) by employing a surfactant-monolayer-assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF-PP is featured as free-standing thin film with large single-crystalline domains up to ≈60 µm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF-PP film on silicon nanowire-based field-effect transistor is demonstrated as a bio-inspired system to mimic neuronal synapses, displaying a learning-erasing-forgetting memory process.

7.
Small ; 15(23): e1901265, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31034144

RESUMO

2D molybdenum disulfide (MoS2 ) gives a new inspiration for the field of nanoelectronics, photovoltaics, and sensorics. However, the most common processing technology, e.g., liquid-phase based scalable exfoliation used for device fabrication, leads to the number of shortcomings that impede their large area production and integration. Major challenges are associated with the small size and low concentration of MoS2 flakes, as well as insufficient control over their physical properties, e.g., internal heterogeneity of the metallic and semiconducting phases. Here it is demonstrated that large semiconducting MoS2 sheets (with dimensions up to 50 µm) can be obtained by a facile cathodic exfoliation approach in nonaqueous electrolyte. The synthetic process avoids surface oxidation thus preserving the MoS2 sheets with intact crystalline structure. It is further demonstrated at the proof-of-concept level, a solution-processed large area (60 × 60 µm) flexible Ebola biosensor, based on a MoS2 thin film (6 µm thickness) fabricated via restacking of the multiple flakes on the polyimide substrate. The experimental results reveal a low detection limit (in femtomolar-picomolar range) of the fabricated sensor devices. The presented exfoliation method opens up new opportunities for fabrication of large arrays of multifunctional biomedical devices based on novel 2D materials.


Assuntos
Técnicas Biossensoriais/instrumentação , Dissulfetos/química , Técnicas Eletroquímicas/métodos , Molibdênio/química , Nanoestruturas/química , Nanotecnologia/métodos , Pontos Quânticos/química , Anticorpos Antivirais/química , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Eletrodos , Equipamentos e Provisões , Doença pelo Vírus Ebola/diagnóstico , Humanos , Imunoconjugados/química , Microtecnologia/métodos , Nucleoproteínas/química , Nucleoproteínas/imunologia , Propriedades de Superfície , Proteínas do Core Viral/química , Proteínas do Core Viral/imunologia
8.
Nano Lett ; 16(8): 4991-5000, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27417510

RESUMO

The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.

9.
Nano Lett ; 16(7): 4288-96, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27266478

RESUMO

We report an ultrasensitive label-free DNA biosensor with fully on-chip integrated rolled-up nanomembrane electrodes. The hybridization of complementary DNA strands (avian influenza virus subtype H1N1) is selectively detected down to attomolar concentrations, an unprecedented level for miniaturized sensors without amplification. Impedimetric DNA detection with such a rolled-up biosensor shows 4 orders of magnitude sensitivity improvement over its planar counterpart. Furthermore, it is observed that the impedance response of the proposed device is contrary to the expected behavior due to its particular geometry. To further investigate this difference, a thorough model analysis of the measured signal and the electric field calculation is performed, revealing enhanced electron hopping/tunneling along the DNA chains due to an enriched electric field inside the tube. Likewise, conformational changes of DNA might also contribute to this effect. Accordingly, these highly integrated three-dimensional sensors provide a tool to study electrical properties of DNA under versatile experimental conditions and open a new avenue for novel biosensing applications (i.e., for protein, enzyme detection, or monitoring of cell behavior under in vivo like conditions).


Assuntos
Técnicas Biossensoriais , DNA Viral/análise , Nanoestruturas , Técnicas Eletroquímicas , Eletrodos , Vírus da Influenza A Subtipo H1N1/genética , Hibridização de Ácido Nucleico
10.
Nanoscale Horiz ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984482

RESUMO

The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.

11.
Analyst ; 138(3): 839-44, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23237871

RESUMO

The selective absorbance detection of mercury(II) (Hg(2+)) and lead(II) (Pb(2+)) ions using ferrocene-based colorimetric ligands and miniaturized multiple internal reflection (MIR) systems implemented in a low-cost photonic lab on a chip (PhLoC) is reported. The detection principle is based on the formation of selective stable complexes between the heavy metal ion and the corresponding ligand. This interaction modulates the ligand spectrum by giving rise to new absorbance bands or wavelength shifting of the existing ones. A comparative study for the detection of Hg(2+) was carried out with two MIR-based PhLoC systems showing optical path lengths (OPLs) of 0.64 cm and 1.42 cm as well as a standard cuvette (1.00 cm OPL). Acetonitrile solutions containing the corresponding ligand and increasing concentrations of the heavy metal ion were pumped inside the systems and the absorbance in the visible region of the spectra was recorded. The optical behaviour of all the tested systems followed the expected Beer-Lambert law. Thus, the best results were achieved with the one with the longest OPL, which showed a linear behaviour in a concentration range of 1 µM-90 µM Hg(2+), a sensitivity of 5.6 × 10(-3) A.U. µM(-1) and a LOD of 2.59 µM (0.49 ppm), this being 1.7 times lower than that recorded with a standard cuvette, and using a sample/reagent volume around 190 times smaller. This microsystem was also applied for the detection of Pb(2+) and a linear behaviour in a concentration range of 3-100 µM was obtained, and a sensitivity of 9.59 × 10(-4) A.U. µM(-1) and a LOD of 4.19 µM (0.868 ppm) were achieved. Such a simple analytical tool could be implemented in portable instruments for automatic in-field measurements and, considering the minute sample and reagent volume required, would enable the deployment of high throughput environmental analysis of these pollutants and other related hazardous species.


Assuntos
Dimetilpolisiloxanos/química , Poluentes Ambientais/análise , Metais Pesados/análise , Espectrofotometria Ultravioleta , Compostos Ferrosos/química , Íons/química , Dispositivos Lab-On-A-Chip , Chumbo/análise , Mercúrio/análise , Metalocenos , Fótons , Espectrofotometria Ultravioleta/instrumentação
12.
Biosens Bioelectron ; 236: 115362, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37300901

RESUMO

Pandemics as the one we are currently facing, where fast-spreading viruses present a threat to humanity, call for simple and reliable methods to perform early diagnosis, enabling detection of very low pathogen loads even before symptoms start showing in the host. So far, standard polymerase chain reaction (PCR) is the most reliable method for doing so, but it is rather slow and needs specialized reagents and trained personnel to operate it. Additionally, it is expensive and not easily accessible. Therefore, developing miniaturized and portable sensors which perform early detection of pathogens with high reliability is necessary to not only prevent the spreading of the disease but also to monitor the effectiveness of the developed vaccines and the appearance of new pathogenic variants. Thus, in this work we develop a sensitive microfluidic impedance biosensor for the direct detection of SARS-CoV-2, towards a mobile point-of-care (POC) platform. The operational parameters are optimized with the aid of design-of-experiment (DoE), for an accurate detection of the viral antigens using electrochemical impedance spectroscopy (EIS). We perform the biodetection of buffer samples spiked with fM concentration levels and validate the biosensor in a clinical context of relevance by analyzing 15 real patient samples up to a Ct value (cycle threshold) of 27. Finally, we demonstrate the versatility of the developed platform using different settings, including a small portable potentiostat, using multiple channels for self-validation, as well as with single biosensors for a smartphone-based readout. This work contributes to the rapid and reliable diagnostics of COVID-19 and can be extended to other infectious diseases, allowing the monitoring of viral load in vaccinated and unvaccinated people to anticipate a potential relapse of the disease.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Microfluídica , Impedância Elétrica , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
13.
ACS Appl Mater Interfaces ; 15(34): 40191-40200, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603713

RESUMO

The SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods. Their smaller size is an important asset to consider in combination with ultrasensitive field-effect transistors (FETs) as transducers, which respond more intensely when biorecognition occurs near their surface. This work demonstrates the immobilization of sybodies against the spike protein of the virus on silicon surfaces, which are often integral parts of the semiconducting channel of FETs. Immobilized sybodies maintain the capability to capture antigens, even at low concentrations in the femtomolar range, as observed by fluorescence microscopy. Finally, the first proof of concept of sybody-modified FET sensing is provided using a nanoscopic silicon net as the sensitive area where the sybodies are immobilized. The future development of further sybodies against other biomarkers and their generalization in biosensors could be critical to decrease the cost of biodetection platforms in future pandemics.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Silício , Anticorpos , Microscopia de Fluorescência
14.
Prog Mol Biol Transl Sci ; 187(1): 295-333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094779

RESUMO

The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Biomarcadores , Humanos
15.
Nano Res ; 15(3): 2512-2521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34493951

RESUMO

We demonstrate the selective detection of hydrogen sulfide at breath concentration levels under humid airflow, using a self-validating 64-channel sensor array based on semiconducting single-walled carbon nanotubes (sc-SWCNTs). The reproducible sensor fabrication process is based on a multiplexed and controlled dielectrophoretic deposition of sc-SWCNTs. The sensing area is functionalized with gold nanoparticles to address the detection at room temperature by exploiting the affinity between gold and sulfur atoms of the gas. Sensing devices functionalized with an optimized distribution of nanoparticles show a sensitivity of 0.122%/part per billion (ppb) and a calculated limit of detection (LOD) of 3 ppb. Beyond the self-validation, our sensors show increased stability and higher response levels compared to some commercially available electrochemical sensors. The cross-sensitivity to breath gases NH3 and NO is addressed demonstrating the high selectivity to H2S. Finally, mathematical models of sensors' electrical characteristics and sensing responses are developed to enhance the differentiation capabilities of the platform to be used in breath analysis applications. Electronic Supplementary Material: Supplementary material (details on the dielectrophoretic deposition, AuNP functionalization optimization, full range of experimental and model H2S sensing response up to 820 ppb, and sensing response to NO gas) is available in the online version of this article at 10.1007/s12274-021-3771-7.

16.
J Clin Med ; 11(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566534

RESUMO

The number of patients in intensive care units has increased over the past years. Critically ill patients are treated with a real time support of the instruments that offer monitoring of relevant blood parameters. These parameters include blood gases, lactate, and glucose, as well as pH and temperature. Considering the COVID-19 pandemic, continuous management of dynamic deteriorating parameters in patients is more relevant than ever before. This narrative review aims to summarize the currently available literature regarding real-time monitoring of blood parameters in intensive care. Both, invasive and non-invasive methods are described in detail and discussed in terms of general advantages and disadvantages particularly in context of their use in different medical fields but especially in critical care. The objective is to explicate both, well-known and frequently used as well as relatively unknown devices. Furtehrmore, potential future direction in research and development of realtime sensor systems are discussed. Therefore, the discussion section provides a brief description of current developments in biosensing with special emphasis on their technical implementation. In connection with these developments, the authors focus on different electrochemical approaches to invasive and non-invasive measurements in vivo.

17.
Front Neurosci ; 16: 875656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720700

RESUMO

Many biomarkers including neurotransmitters are found in external body fluids, such as sweat or saliva, but at lower titration levels than they are present in blood. Efficient detection of such biomarkers thus requires, on the one hand, to use techniques offering high sensitivity, and, on the other hand, to use a miniaturized format to carry out diagnostics in a minimally invasive way. Here, we present the hybrid integration of bottom-up silicon-nanowire Schottky-junction FETs (SiNW SJ-FETs) with complementary-metal-oxide-semiconductor (CMOS) readout and amplification electronics to establish a robust biosensing platform with 32 × 32 aptasensor measurement sites at a 100 µm pitch. The applied hetero-junctions yield a selective biomolecular detection down to femtomolar concentrations. Selective and multi-site detection of dopamine is demonstrated at an outstanding sensitivity of ∼1 V/fM. The integrated platform offers great potential for detecting biomarkers at high dilution levels and could be applied, for example, to diagnosing neurodegenerative diseases or monitoring therapy progress based on patient samples, such as tear liquid, saliva, or eccrine sweat.

18.
Biosens Bioelectron ; 206: 114124, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35272215

RESUMO

Immunotherapy using CAR-T cells is a new technological paradigm for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field-effect transistors are used to develop target modules for an optimized CAR-T cell operation. Focusing on a library of seven variants of E5B9 peptide that is used as CAR targeting epitope, we performed multiplexed binding tests using nanosensor chips. These peptides had been immobilized onto the sensor to compare the transistor signals upon titration with anti-La 5B9 antibodies. The correlation of binding affinities and sensor sensitivities enabled a selection of candidates for the interaction between CAR and target modules. An extremely low detection limit was observed for the sensor, down to femtomolar concentration, outperforming the current assay of the same purpose. Finally, the CAR T-cells redirection capability of selected peptides in target modules was proven successful in an in-vitro cytotoxicity assay. Our results open the perspective for the nanosensors to go beyond the early diagnostics in clinical cancer research towards developing and monitoring immunotherapeutic treatment, where the quantitative analysis with the standard techniques is limited.


Assuntos
Técnicas Biossensoriais , Nanofios , Imunoterapia , Imunoterapia Adotiva/métodos , Linfócitos T
19.
Analyst ; 136(17): 3496-502, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21336349

RESUMO

A comparative study of different approaches for the selective immobilisation of biomolecules on the surface of poly(dimethylsiloxane) (PDMS) is reported. The motivation of this work is to set a robust and reliable protocol for the easy implementation of a biosensor device in a PDMS-based photonic lab-on-a-chip (PhLoC). A hollow prism configuration, previously reported for the colorimetric detection of analytes was chosen for this study. Here, the inner walls of the hollow prism were initially modified by direct adsorption of either polyethylene glycol (PEG) or polyvinyl alcohol (PVA) linear polymers as well as by carrying out a light chemical oxidation step. All these processes introduced hydroxyl groups on the PDMS surface to a different extent. The hydroxyl groups were further silanised using a silane containing an aldehyde end-group. The interaction between this group and a primary amine moiety enabled the selective covalent attachment of a biomolecule on the PDMS surface. A thorough structural characterisation of the resulting modified-PDMS substrates was carried out by contact angle measurements, X-ray photoelectron spectroscopic (XPS) analysis and atomic force microscopy (AFM) imaging. Using horseradish peroxidase as a model recognition element, different biosensor approaches based on each modification process were developed for the detection of hydrogen peroxide target analyte in a concentration range from 0.1 µM to 100 µM. The analytical performance was similar in all cases, a linear concentration range between 0.1 µM and 24.2 µM, a sensitivity of 0.02 a.u. µM(-1) and a limit of detection around 0.1 µM were achieved. However, important differences were observed in the reproducibility of the devices as well as in their operational stability, which was studied over a period of up to two months. Considering all these studies, the PVA-modified approach appeared to be the most suitable one for the simple fabrication of a biosensor device integrated in a PDMS PhLoC.


Assuntos
Técnicas Biossensoriais/métodos , Dimetilpolisiloxanos/química , Peróxido de Hidrogênio/análise , Técnicas Analíticas Microfluídicas/métodos , Técnicas Biossensoriais/instrumentação , Enzimas Imobilizadas/metabolismo , Desenho de Equipamento , Peroxidase do Rábano Silvestre/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Polietilenoglicóis/química , Álcool de Polivinil/química , Sensibilidade e Especificidade , Propriedades de Superfície
20.
Neuroscience ; 473: 44-51, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407460

RESUMO

In many species, social communication and mate choice are influenced by olfactory cues associated with the major histocompatibility complex (MHC). It has been reported that humans also respond to olfactory signals related to the human MHC-equivalent, the Human Leucocyte Antigen (HLA)-System, and exhibit an olfactory-mediated preference for potential mating partners with a dissimilar, disassortative, HLA-type compared to their own. The aim of this study was to investigate whether HLA-associated peptides, presented as volatile cues, elicit neuronal responses at the receptors in the human olfactory epithelium and can be consciously perceived. To this end the discrimination ability for peptides was tested in a 3-alternative forced choice model. Furthermore electro-olfactograms of the olfactory epithelium and EEG-derived chemosensory event related potentials were recorded using precisely controlled olfactometric stimulation with peptides and control odors. Based on responses from 52 young, healthy participants the peptides could not be discriminated and the electrophysiological signals provided no evidence for a specific response to the peptides which was in contrast to the control odors. In conclusion, within the current setup the results suggest that HLA-associated peptides do not produce specific olfactory activation in humans.


Assuntos
Odorantes , Olfato , Encéfalo , Humanos , Mucosa Olfatória , Peptídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa