Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chem Rec ; 22(1): e202100150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418290

RESUMO

Perovskite solar cells (PSC) have shown a rapid increase in efficiency than other photovoltaic technology. Despite its success in terms of efficiency, this technology is inundated with numerous challenges hindering the progress towards commercial viability. The crucial one is the anomalous hysteresis observed in the photocurrent density-voltage (J-V) response in PSC. The hysteresis phenomenon in the solar cell presents a challenge for determining the accurate power conversion efficiency of the device. A detailed investigation of the fundamental origin of hysteresis behavior in the device and its associated mechanisms is highly crucial. Though numerous theories have been proposed to explain the causes of hysteresis, its origin includes slow transient capacitive current, trapping, and de-trapping process, ion migrations, and ferroelectric polarization. The remaining issues and future research required toward the understanding of hysteresis in PSC device is also discussed.

2.
Skin Pharmacol Physiol ; 33(6): 331-341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33401283

RESUMO

BACKGROUND: Capsaicin, the main pungent ingredient in hot chili peppers, causes excitation of small sensory neurons. It also provides the basic pungent flavor in Capsicum fruits. SUMMARY: Capsaicin plays a vital role as an agonist for the TRPV1 (transient receptor potential cation channel, subfamily V, member 1) receptor. TRPV1 is essential for the reduction of oxidative stress, pain sensations, and inflammation. Therefore, it has many pros related to health issue. Activation and positive impact of TRPV1 via capsaicin has been studied in various dermatological conditions and in other skin-related issues. Past studies documented that capsaicin plays a vital role in the prevention of atopic dermatitis as well as psoriasis. Moreover, TRPV1 is also very important for skin health because it acts as a capsaicin receptor. It is found in nociceptive nerve fibers and nonneural structures. It prompts the release of a compound that is involved in communicating pain between the spinal cord nerves and other parts of the body. Key Messages: Here, we summarize the growing evidence for the beneficial role of capsaicin and TRPV1 and how they help in the relief of skin diseases such as inflammation, permeation, dysfunction, atopic dermatitis, and psoriasis and in pain amplification syndrome.


Assuntos
Capsaicina/uso terapêutico , Capsicum/química , Inflamação/prevenção & controle , Pele/efeitos dos fármacos , Especiarias/análise , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Canais de Cátion TRPV/metabolismo
3.
RSC Adv ; 14(16): 11284-11310, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38595713

RESUMO

Owing to the high cost of recycling waste, underdeveloped countries discharge industrial, agricultural, and anthropogenic effluents without pretreatment. As a result, pollutant-loaded waste enters water bodies. Among the diverse toxic contaminants, heavy metal ions are the most detrimental because of their chronic toxicity, non-degradability, prevalence, and bioaccumulation. The growing shortage of water resources demands the removal of heavy metal ions from wastewater. Three SDGs of the sustainability agenda of the United Nations appeal for clean water to protect life beneath water and on land depending on the water sources. Therefore, efficient environmentally friendly approaches for wastewater treatment are urgently required. In this regard, several methods have been developed for the removal of heavy metal ions from wastewater, including adsorption as the most widely used method owing to its eco-friendly, cost-effective, and sustainable nature. The present review discusses the progress in the preparation and application of various adsorbents based on carbon, micro-organisms, agricultural waste and inorganic materials for the extraction of toxic metal ions such as Pb2+, Cr6+, As3+, As5+, Hg2+ and Cd2+. Herein, we provide information on the role of the homogeneity and heterogeneity of adsorbents, kinetics of the adsorption of an adsorbate on the surface of an adsorbent, insights into adsorption reaction pathways, the mechanism of the sorption process, and the uptake of solutes from solution. The present review will be useful for researchers working on environmental protection and clean environment.

4.
Biosensors (Basel) ; 13(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37185491

RESUMO

Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.


Assuntos
Técnicas Biossensoriais , Nanofibras , Nanoestruturas , Nanotubos de Carbono , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos
5.
ACS Omega ; 7(36): 32302-32312, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36119977

RESUMO

Textile industry effluents are heavily contaminated with dyes. The discharge of these toxic dyes into waterbodies poses a serious threat to aquatic flora and fauna. The ultimate entrance of these toxins from thereon into the food chain affects the primary and secondary consumers. Therefore, the adoption of a sustainable solution for protection against the detrimental effects associated with adulterated water is an immediate need of the hour. To address the severity of the issue, the present work aims to design an electrochemical sensing platform by modifying the glassy carbon electrode (GCE) with zinc oxide nanoparticles and amino group-functionalized multi-walled carbon nanotubes (NH2-fMWCNTs) for the detection of Orange II, which is a toxic azo dye. Zinc oxide nanoparticles facilitate electron transfer between the transducer and the analyte. While, the positively charged NH2-fMWCNTs in acidic medium help in preconcentration of negatively charged analyte molecules at the electrode/electrolyte interface. The modification of the GCE catalyzed the oxidation of Orange II, as evidenced by the negative shift of the oxidation potential and enhancement in peak current intensity. Square wave voltammetry was used to optimize various experimental conditions, such as the supporting electrolyte, pH of the electrolyte, deposition potential, and deposition time for the best performance of the designed sensor. Under the optimized conditions, the detection limit and quantification of the designed sensor were found to be 0.57 and 1.92 nM, respectively. The catalytic degradation studies of Orange II was shown to be facilitated by titanium dioxide, which acted as a photocatalyst. The addition of hydrogen peroxide further promoted the extent and rate of degradation of dye. The breakdown of Orange II was probed by the designed sensing platform electrochemically and also by UV-visible spectroscopy. The dye degraded up to 92% by following pseudo-first-order kinetics.

6.
Indian J Hematol Blood Transfus ; 38(2): 309-318, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35496958

RESUMO

This is the first multicenter study from Pakistan exploring the prevalence, clinical presentations and treatment outcomes of Multiple Myeloma patients. This retrospective study involved data collection from hospital record system of four tertiary care referral hospitals of Pakistan including all patients diagnosed as having Multiple Myeloma from January 2014 to December 2018. The demographic details, clinical presentations, laboratory findings, treatment responses, and mortalities were evaluated. The progression-free survival and overall survival were analyzed considering relapse and mortality as the end points, respectively. For the progression-free survival, the Kaplan-Meier survival analysis and the log rank test were used to compare the survival function for chemotherapy followed by autologous stem cell transplant (ASCT) as opposed to chemotherapy alone (non-ASCT). The overall survival analysis was assessed by Kaplan-Meier survival analysis. This study identified 403 Multiple Myeloma patients in five years. The median age at presentation was 55 years. Bortezomib based drug regimens were the most commonly used initial treatments (57.5%). Forty three patients received ASCT. The progression-free survival median for ASCT and non-ASCT patients were 50 months (95% CI, 42-57.9 months) and 26 months (95% CI, 21.5-30.5 months), respectively. The cumulative probability of survival rate at 60 months was 80%. This study identified 403 Multiple Myeloma patients over 5 years in four tertiary care hospitals of Pakistan. It underscores the importance of autologous stem cell transplant in Myeloma patients and advocates improving its facilities in Pakistan.

7.
Sci Rep ; 10(1): 6328, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286435

RESUMO

To investigate cost affordable and robust HER and OER catalysts with significant low overpotentials, we have successfully embedded FeCoSe2 spheres on smooth surfaces of graphitic carbon nitride that demonstrated high stability and electrocatalytic activity for H2 production. We systematically analyzed the composition and morphology of FexCo1-xSe2/g-C3N4 and attributed the remarkable electrochemical performance of the catalyst to its unique structure. Fe0.2Co0.8Se2/g-C3N4 showed a superior HER activity, with quite low overpotential value (83 mV at -20 mA cm-2 in 0.5 M H2SO4) and a current density of -3.24, -7.84, -14.80, -30.12 mA cm-2 at 0 V (vs RHE) in Dulbecco's Phosphate-Buffered Saline (DPBS), artificial sea water (ASW), 0.5 M H2SO4 and 1 M KOH, respectively. To the best of our knowledge, these are the highest reported current densities at this low potential value, showing intrinsic catalytic activity of the synthesized material. Also, the catalyst was found to deliver a high and stable current density of -1000 mA cm-2 at an overpotential of just 317 mV. Moreover, the synthesized catalyst delivered a constant current density of -30 mA cm-2 for 24 h without any noticeable change in potential at -0.2 V. These attributes confer our synthesized catalyst to be used for renewable fuel production and applications.

8.
J Pharm Biomed Anal ; 165: 73-81, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30503895

RESUMO

In this study, an antiparkinson drug Entacapone (ENP) is electrochemically investigated under optimized conditions using NH2 functionalized multi walled carbon nanotubes (NH2fMWCNT) decorated over glassy carbon electrode (GCE). The surface morphology of the NH2fMWCNT/GCE was probed by scanning electron microscopy (SEM) armed with EDX analysis. Electrochemical impedance spectroscopy (EIS) was employed to investigate the electron transfer capability of modified and bare electrodes. Cyclic voltammetry was used to compare the redox response of ENP on the surface of modified and unmodified electrodes. The influence of interfering agents was also studied to examine the selectivity of the designed sensor. For the purpose of practical applicability of the proposed method, differential pulse voltammetric method was applied for the investigation of ENP in real samples i.e., tablet, human serum and urine. Almost 100% recovery percentages were obtained from tablet, serum and urine samples with RSD% values of less than 2% for all the samples, thus, suggesting promising applicability of the designed electrochemical sensing platform (NH2fMWCNT/GCE) for determination of ENP in pharmaceutical dosage and real samples.


Assuntos
Antiparkinsonianos/análise , Catecóis/análise , Espectroscopia Dielétrica/métodos , Nanotubos de Carbono , Nitrilas/análise , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacocinética , Inibidores de Catecol O-Metiltransferase/administração & dosagem , Inibidores de Catecol O-Metiltransferase/análise , Inibidores de Catecol O-Metiltransferase/farmacocinética , Catecóis/administração & dosagem , Catecóis/farmacocinética , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Microscopia Eletrônica de Varredura , Nitrilas/administração & dosagem , Nitrilas/farmacocinética , Oxirredução , Comprimidos
9.
ACS Omega ; 4(26): 22057-22068, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891086

RESUMO

Herein, we present a greener approach to achieve an ultrasensitive, selective, and viable sensor engineered by amino acids as a recognition layer for simultaneous electrochemical sensing of toxic heavy metals (HMs). Electrochemical techniques like electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square-wave anodic stripping voltammetry (SWASV) were applied to demonstrate sensing capabilities of the designed analytical tool. The comparative results of different amino acids demonstrate alanine's superior performance with a well-resolved and enhanced current signal for target metal ions due to strong complexation of its functional moieties. The working conditions for alanine-modified GCE were optimized by investigating the effect of alanine concentration, different supporting electrolytes, pH values, accumulation potentials, and time. The limits of detection for Zn2+, Cd2+, Cu2+, and Hg2+ were found to be 8.92, 5.77, 3.01, and 5.89 pM, respectively. The alanine-modified electrode revealed absolute discrimination ability, stability, and ultrasensitivity toward metal ions even in the presence of multifold interfering species. Likewise, greener modifier-designed electrodes possessed remarkable electrocatalytic activity, cost affordability, reproducibility, and applicability for picomolar level detection of HM ions in real water sample matrixes. Theoretical calculations for the HM-amino acid interaction also support a significantly improved mediator role of the alanine modifier that is consistent with the experimental findings.

10.
Glob Chall ; 3(1): 1800023, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31565352

RESUMO

Electrochemical capacitors (ECs) are a vital class of electrical energy storage (EES) devices that display the capacity of rapid charging and provide high power density. In the current era, interest in using ionic liquids (ILs) in high-performance EES devices has grown exponentially, as this novel versatile electrolyte media is associated with high thermal stability, excellent ionic conductivity, and the capability to withstand high voltages without undergoing decomposition. ILs are therefore potentially useful materials for improving the energy/power performances of ECs without compromising on safety, cyclic stability, and power density. The current review article underscores the importance of ILs as sustainable and high-performance electrolytes for electrochemical capacitors.

11.
RSC Adv ; 9(42): 24539-24559, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527869

RESUMO

Nanoparticles (NPs) are new inspiring clinical targets that have emerged from persistent efforts with unique properties and diverse applications. However, the main methods currently utilized in their production are not environmentally friendly. With the aim of promoting a green approach for the synthesis of NPs, this review describes eco-friendly methods for the preparation of biogenic NPs and the known mechanisms for their biosynthesis. Natural plant extracts contain many different secondary metabolites and biomolecules, including flavonoids, alkaloids, terpenoids, phenolic compounds and enzymes. Secondary metabolites can enable the reduction of metal ions to NPs in eco-friendly one-step synthetic processes. Moreover, the green synthesis of NPs using plant extracts often obviates the need for stabilizing and capping agents and yields biologically active shape- and size-dependent products. Herein, we review the formation of metallic NPs induced by natural extracts and list the plant extracts used in the synthesis of NPs. In addition, the use of bacterial and fungal extracts in the synthesis of NPs is highlighted, and the parameters that influence the rate of particle production, size, and morphology are discussed. Finally, the importance and uniqueness of NP-based products are illustrated, and their commercial applications in various fields are briefly featured.

12.
J Mol Model ; 20(7): 2344, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992990

RESUMO

The triplet-triplet absorption spectra of three newly synthesized N-substituted 4,5,6,7-tetrachlorophthalimides (TCP) were measured experimentally and calculated with density functional theory. The heavy atom effect increases the intersystem crossing rate, and the transient triplet absorbance could be measured. Fluorescence emission was not observed. The transient absorption spectra show two peaks in the region of 385-410 nm and 770-830 nm having a red shift with increasing size of N substituent. The singlet and triplet states and their vertical transitions were investigated theoretically by NEVPT2/CASSCF(12,9) and CAM-B3LYP methods for a benchmark molecule N-Phenyl-maleimide, and by CAM-B3LYP for N-Phenyl-TCP. It is shown that the singlet excited S1 state and the pi-pi* triplet state have similar geometries, thus intersystem crossing is most likely for N-Phenyl-TCP. No crossing between the singlet ground state and the singlet excited states could be found on the linear synchronous transit paths of S0-S1-T1-S0 states using CAM-B3LYP method. The computed singlet ground state absorption and triple-triplet absorption spectra agree well with the experimental ones, in both spectra the first state is a pi-pi* state while the second state is the n-pi* state with an energetic difference of 0.1 eV.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa