Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 572(7771): 614-619, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435015

RESUMO

Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.


Assuntos
Tecido Adiposo Marrom/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo Energético , Homeostase , Proteínas Mitocondriais/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Animais , Temperatura Baixa , Intolerância à Glucose/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo
2.
Biol Reprod ; 103(4): 717-735, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32627815

RESUMO

Regulatory mechanisms of germline differentiation have generally been explained via the function of signaling pathways, transcription factors, and epigenetic regulation; however, little is known regarding proteomic and metabolomic regulation and their contribution to germ cell development. Here, we conducted integrated proteomic and metabolomic analyses of fetal germ cells in mice on embryonic day (E)13.5 and E18.5 and demonstrate sex- and developmental stage-dependent changes in these processes. In male germ cells, RNA processing, translation, oxidative phosphorylation, and nucleotide synthesis are dominant in E13.5 and then decline until E18.5, which corresponds to the prolonged cell division and more enhanced hyper-transcription/translation in male primordial germ cells and their subsequent repression. Tricarboxylic acid cycle and one-carbon pathway are consistently upregulated in fetal male germ cells, suggesting their involvement in epigenetic changes preceding in males. Increased protein stability and oxidative phosphorylation during female germ cell differentiation suggests an upregulation of aerobic energy metabolism, which likely contributes to the proteostasis required for oocyte maturation in subsequent stages. The features elucidated in this study shed light on the unrevealed mechanisms of germ cell development.


Assuntos
Diferenciação Celular/fisiologia , Células Germinativas Embrionárias/fisiologia , Metabolômica , Proteômica , Animais , DNA/genética , DNA/metabolismo , Metilação de DNA , Embrião de Mamíferos/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Transgênicos , Diferenciação Sexual , Fatores Sexuais , Fatores de Transcrição
3.
Proc Natl Acad Sci U S A ; 114(31): 8289-8294, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716939

RESUMO

Primordial germ cells (PGCs), undifferentiated embryonic germ cells, are the only cells that have the ability to become gametes and to reacquire totipotency upon fertilization. It is generally understood that the development of PGCs proceeds through the expression of germ cell-specific transcription factors and characteristic epigenomic changes. However, little is known about the properties of PGCs at the metabolite and protein levels, which are directly responsible for the control of cell function. Here, we report the distinct energy metabolism of PGCs compared with that of embryonic stem cells. Specifically, we observed remarkably enhanced oxidative phosphorylation (OXPHOS) and decreased glycolysis in embryonic day 13.5 (E13.5) PGCs, a pattern that was gradually established during PGC differentiation. We also demonstrate that glycolysis and OXPHOS are important for the control of PGC reprogramming and specification of pluripotent stem cells (PSCs) into PGCs in culture. Our findings about the unique metabolic property of PGCs provide insights into our understanding of the importance of distinct facets of energy metabolism for switching PGC and PSC status.


Assuntos
Células Germinativas Embrionárias/metabolismo , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Fosforilação Oxidativa , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células Germinativas Embrionárias/citologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteoma/análise
4.
Proc Natl Acad Sci U S A ; 114(37): E7697-E7706, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847964

RESUMO

Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.


Assuntos
Adenoma/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Adenoma/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Feminino , Genes myc , Humanos , Masculino , Metabolômica/métodos , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Pirimidinas/biossíntese , Transcriptoma
5.
J Plant Res ; 130(3): 539-550, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28258381

RESUMO

Brassica rapa show a wide range of morphological variations. In particular, the leaf morphologies of the Japanese traditional leafy vegetables Mizuna and Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey) are distinctly different, even though they are closely related cultivars that are easy to cross. In addition to the differences in the gross morphology of leaves, some cultivars of Mibuna (Kyo-nishiki) have many trichomes on its leaves, whereas Mizuna (Kyo-mizore) does not. To identify the genes responsible for the different number of trichomes, we performed a quantitative trait loci (QTL) analysis of Mizuna and Mibuna. To construct linkage maps for these cultivars, we used RNA-seq data to develop cleaved amplified polymorphic sequence (CAPS) markers. We also performed a restriction site-associated DNA sequencing (RAD-seq) analysis to detect single-nucleotide polymorphisms (SNPs). Two QTL analyses were performed in different years, and both analyses indicated that the largest effect was found on LG A9. Expression analyses showed that a gene homologous to GLABRA1 (GL1), a transcription factor implicated in trichome development in Arabidopsis thaliana, and the sequences 3'-flanking (downstream) of BrGL1, differed considerably between Mizuna (Kyo-mizore) and Mibuna (Kyo-nishiki). These results indicate that BrGL1 on LG A9 is one of the candidate genes responsible for the difference in trichome number between Mizuna and Mibuna. Detecting genes that are responsible for morphological variations allows us to better understand the breeding history of Mizuna and Mibuna.


Assuntos
Brassica rapa/genética , Locos de Características Quantitativas/genética , Tricomas/genética , Verduras/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Brassica rapa/anatomia & histologia , Brassica rapa/classificação , Cruzamento , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Ligação Genética , Marcadores Genéticos , Técnicas de Genotipagem , Japão , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição
6.
Plant Cell Physiol ; 55(2): 445-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24319074

RESUMO

Tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. The genome sequencing of the tomato cultivar 'Heinz 1706' was recently completed. To accelerate the progress of tomato genomics studies, systematic bioresources, such as mutagenized lines and full-length cDNA libraries, have been established for the cultivar 'Micro-Tom'. However, these resources cannot be utilized to their full potential without the completion of the genome sequencing of 'Micro-Tom'. We undertook the genome sequencing of 'Micro-Tom' and here report the identification of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) between 'Micro-Tom' and 'Heinz 1706'. The analysis demonstrated the presence of 1.23 million SNPs and 0.19 million indels between the two cultivars. The density of SNPs and indels was high in chromosomes 2, 5 and 11, but was low in chromosomes 6, 8 and 10. Three known mutations of 'Micro-Tom' were localized on chromosomal regions where the density of SNPs and indels was low, which was consistent with the fact that these mutations were relatively new and introgressed into 'Micro-Tom' during the breeding of this cultivar. We also report SNP analysis for two 'Micro-Tom' varieties that have been maintained independently in Japan and France, both of which have served as standard lines for 'Micro-Tom' mutant collections. Approximately 28,000 SNPs were identified between these two 'Micro-Tom' lines. These results provide high-resolution DNA polymorphic information on 'Micro-Tom' and represent a valuable contribution to the 'Micro-Tom'-based genomics resources.


Assuntos
Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Cruzamento , Mapeamento Cromossômico , DNA Intergênico , DNA de Plantas/química , DNA de Plantas/genética , Biblioteca Gênica , Genômica , Mutação INDEL , Anotação de Sequência Molecular , Mutação , Fenótipo , Análise de Sequência de DNA , Especificidade da Espécie
7.
Biochim Biophys Acta ; 1824(12): 1442-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22750467

RESUMO

In the studies of Escherichia coli (E. coli), metabolomics analyses have mainly been performed using steady state culture. However, to analyze the dynamic changes in cellular metabolism, we performed a profiling of concentration of metabolites by using batch culture. As a first step, we focused on glucose uptake and the behavior of the first metabolite, G6P (glucose-6-phosphate). A computational formula was derived to express the glucose uptake rate by a single cell from two kinds of experimental data, extracellular glucose concentration and cell growth, being simulated by Cell Illustrator. In addition, average concentration of G6P has been measured by CE-MS. The existence of another carbon source was suggested from the computational result. After careful comparison between cell growth, G6P concentration, and the computationally obtained curve of glucose uptake rate, we predicted the consumption of glycogen in lag phase and its accumulation as an energy source in an E. coli cell for the next proliferation. We confirmed our prediction experimentally. This behavior indicates the importance of glycogen participation in the lag phase for the growth of E. coli. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Biologia Computacional , Escherichia coli/crescimento & desenvolvimento , Glucose-6-Fosfato/análise , Viabilidade Microbiana
8.
Breed Sci ; 63(1): 14-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23641177

RESUMO

Completion of tomato genome sequencing project has broad impacts on genetic and genomic studies of tomato and Solanaceae plants. The reference genome sequence derived from Solanum lycopersicum cv 'Heinz 1706' serves as the firm basis for sequencing-based approaches to tomato genomics. In this article, we first present a brief summary of the genome sequencing project and a summary of the reference genome sequence. We then focus on recent progress in transcriptome sequencing and small RNA sequencing and show how the reference genome sequence makes these analyses more comprehensive than before. We discuss the potential of in-depth analysis that is based on DNA methylome sequencing and transcription start-site detection. Finally, we describe the current status of efforts to resequence S. lycopersicum cultivars to demonstrate how resequencing can allow the use of intraspecific genomic diversity for detailed phenotyping and breeding.

9.
Oncogene ; 42(16): 1294-1307, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36879117

RESUMO

Oncometabolites, such as D/L-2-hydroxyglutarate (2HG), have directly been implicated in carcinogenesis; however, the underlying molecular mechanisms remain poorly understood. Here, we showed that the levels of the L-enantiomer of 2HG (L2HG) were specifically increased in colorectal cancer (CRC) tissues and cell lines compared with the D-enantiomer of 2HG (D2HG). In addition, L2HG increased the expression of ATF4 and its target genes by activating the mTOR pathway, which subsequently provided amino acids and improved the survival of CRC cells under serum deprivation. Downregulating the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) and oxoglutarate dehydrogenase (OGDH) increased L2HG levels in CRC, thereby activating mTOR-ATF4 signaling. Furthermore, L2HGDH overexpression reduced L2HG-mediated mTOR-ATF4 signaling under hypoxia, whereas L2HGDH knockdown promoted tumor growth and amino acid metabolism in vivo. Together, these results indicate that L2HG ameliorates nutritional stress by activating the mTOR-ATF4 axis and thus could be a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias Colorretais/patologia , Aminoácidos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Oxirredutases do Álcool/metabolismo
10.
Genes Cells ; 16(12): 1190-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22074260

RESUMO

We discovered that the PF1549 gene in Pyrococcus furiosus encodes a very heat-stable RNA 3'-terminal phosphate cyclase (Pf-Rtc). Although all previously reported Rtc proteins are ATP-dependent enzymes, we found that Pf-Rtc requires GTP for its cyclase activity at 95 °C. Low-level activation of the enzyme was also observed in the presence of dGTP but not other dNTPs, indicating that the guanine base is very important for Pf-Rtc activity. We analyzed a series of GTP analogues and found that the conversion from GTP to GMP is important for Pf-Rtc activity and that an excess of GMP inhibits this activity. Gel-shift analysis clearly showed that the RNA-binding activity of Pf-Rtc is totally dependent on the linear form of the 3'-terminal phosphate, with an apparent K(d) value of 20 nm at 95°C. Furthermore, we found that Pf-Rtc may contribute to GTP-dependent RNA ligation activity through the PF0027 protein (a 2'-5' RNA ligase-like protein in P. furiosus). The possible roles of Pf-Rtc and the importance of terminal phosphate structures in RNA are discussed.


Assuntos
Guanosina Trifosfato/metabolismo , Ligases/metabolismo , Fosfatos/metabolismo , Polinucleotídeo Ligases/metabolismo , Pyrococcus furiosus/enzimologia , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli , Temperatura Alta , Cinética , Ligases/química , Ligases/genética , Ligases/isolamento & purificação , Dados de Sequência Molecular , Plasmídeos , Polinucleotídeo Ligases/genética , Pyrococcus furiosus/genética , RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Homologia de Sequência de Aminoácidos , Transformação Bacteriana
11.
Gynecol Endocrinol ; 28(11): 892-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22559824

RESUMO

Heme oxygenase (HO) is the rate-limiting enzyme that catalyzes the degradation of heme into iron, carbon monoxide, and biliverdin. This enzyme has important functions in cellular homeostasis, including the regulation of oxidative load, apoptosis, and inflammation. Two isoforms of HO, the inducible HO-1 and the constitutive HO-2, are expressed and are known to play a role in the normal human endometrium throughout the menstrual cycle, but there is little evidence for HO expression and behavior in adenomyosis, which is the occurrence of intramural ectopic endometrial tissue. The aim of this study was to investigate the presence and localization of the two HO isoforms in both eutopic and ectopic endometrium of women with adenomyosis during the menstrual cycle. The oxidative stress and apoptosis related to HO-1 expression were also assessed. The expression of HO-1 and HO-2 in both eutopic and ectopic endometrium was confirmed, and their levels in the ectopic endometrium were lower than those in the eutopic endometrium. The cyclic variability of HO expression was lost in the ectopic endometrium during the menstrual cycle, whereas this variability was apparent in the eutopic endometrium. Moreover, HO-1 expression corresponded to apoptotic events in the eutopic endometrium. Constitutive HO-2 expression corresponded to endometrial proliferation and degradation. These results reveal that both HO-1 and HO-2 contribute little in the pathophysiology of adenomyosis.


Assuntos
Adenomiose/enzimologia , Endométrio/enzimologia , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Apoptose , Feminino , Humanos , Ciclo Menstrual/metabolismo , Estresse Oxidativo
12.
STAR Protoc ; 3(3): 101531, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35819883

RESUMO

Capillary electrophoresis mass spectrometry (CE-MS) can measure the intracellular amount of highly polar and charged metabolites; liquid chromatography mass spectrometry (LC-MS) can quantify hydrophobic metabolites. A comprehensive metabolome analysis requires independent sample preparation for LC-MS and CE-MS. Here, we present a protocol to prepare for sequentially analyzing the metabolites from one sample. Here we describe the steps for breast cancer cell lines, MCF-7 cells, but the protocol can be applied to other cell types.


Assuntos
Metaboloma , Metabolômica , Linhagem Celular , Células Cultivadas , Espectrometria de Massas/métodos , Metabolômica/métodos
13.
J Hepatol ; 55(4): 896-905, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21334394

RESUMO

BACKGROUND & AIMS: We applied a metabolome profiling approach to serum samples obtained from patients with different liver diseases, to discover noninvasive and reliable biomarkers for rapid-screening diagnosis of liver diseases. METHODS: Using capillary electrophoresis and liquid chromatography mass spectrometry, we analyzed low molecular weight metabolites in a total of 248 serum samples obtained from patients with nine types of liver disease and healthy controls. RESULTS: We found that γ-glutamyl dipeptides, which were biosynthesized through a reaction with γ-glutamylcysteine synthetase, were indicative of the production of reduced glutathione, and that measurement of their levels could distinguish among different liver diseases. Multiple logistic regression models facilitated the discrimination between specific and other liver diseases and yielded high areas under receiver-operating characteristic curves. The area under the curve values in training and independent validation data were 0.952 and 0.967 in healthy controls, 0.817 and 0.849 in drug-induced liver injury, 0.754 and 0.763 in asymptomatic hepatitis B virus infection, 0.820 and 0.762 in chronic hepatitis B, 0.972 and 0.895 in hepatitis C with persistently normal alanine transaminase, 0.917 and 0.707 in chronic hepatitis C, 0.803 and 0.993 in cirrhosis type C, and 0.762 and 0.803 in hepatocellular carcinoma, respectively. Several γ-glutamyl dipeptides also manifested potential for differentiating between nonalcoholic steatohepatitis and simple steatosis. CONCLUSIONS: γ-Glutamyl dipeptides are novel biomarkers for liver diseases, and varying levels of individual or groups of these peptides have the power to discriminate among different forms of hepatic disease.


Assuntos
Dipeptídeos/sangue , Hepatopatias/sangue , Hepatopatias/diagnóstico , Metabolômica/métodos , Metabolômica/normas , Idoso , Biomarcadores/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Diagnóstico Diferencial , Fígado Gorduroso/sangue , Fígado Gorduroso/diagnóstico , Feminino , Glutamina/sangue , Hepatite B Crônica/sangue , Hepatite B Crônica/diagnóstico , Hepatite C Crônica/sangue , Hepatite C Crônica/diagnóstico , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo/fisiologia , Análise Serial de Proteínas/métodos , Análise Serial de Proteínas/normas , Reprodutibilidade dos Testes
14.
J Chromatogr A ; 1652: 462355, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34233246

RESUMO

Polyamine metabolites provide pathophysiological information on disease or therapeutic efficacy, yet rapid screening methods for these biomarkers are lacking. Here, we developed high-throughput polyamine metabolite profiling based on multisegment injection capillary electrophoresis triple quadrupole tandem mass spectrometry (MSI-CE-MS/MS), which allows sequential 40-sample injection followed by electrophoretic separation and specific mass detection. To achieve consecutive analysis of polyamine samples, 1 M formic acid was used as the background electrolyte (BGE). The BGE spacer volume had an apparent effect on peak resolution among samples, and 20 nL was selected as the optimal volume. The use of polyamine isotopomers as the internal standard enabled the correction of matrix effects in MS detection. This method is sensitive, selective and quantitative, and its utility was demonstrated by screening polyamines in 359 salivary samples within 360 min, resulting in discrimination of colorectal cancer patients from noncancer controls.


Assuntos
Neoplasias Colorretais/diagnóstico , Eletroforese Capilar/métodos , Poliaminas/análise , Saliva/química , Espectrometria de Massas em Tandem/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/isolamento & purificação , Neoplasias Colorretais/química , Humanos , Poliaminas/isolamento & purificação
15.
Hortic Res ; 8(1): 132, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059655

RESUMO

Since ancient times, humans have bred several plants that we rely on today. However, little is known about the divergence of most of these plants. In the present study, we investigated the divergence of Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey), a traditional leafy vegetable in Kyoto (Japan), by combining genetic analysis and a survey of ancient literature. Mibuna is considered to have been bred 200 years ago from Mizuna, another traditional leafy vegetable in Kyoto. Mibuna has simple spatulate leaves, whereas Mizuna has characteristic serrated leaves. The quantitative trait loci (QTL) and gene expression analyses suggested that the downregulation of BrTCP15 expression contributed to the change in the leaf shape from serrated to simple spatulate. Interestingly, the SNP analysis indicated that the genomic region containing the BrTCP15 locus was transferred to Mibuna by introgression. Furthermore, we conducted a survey of ancient literature to reveal the divergence of Mibuna and found that hybridization between Mizuna and a simple-leaved turnip might have occurred in the past. Indeed, the genomic analysis of multiple turnip cultivars showed that one of the cultivars, Murasakihime, has almost the same sequence in the BrTCP15 region as Mibuna. These results suggest that the hybridization between Mizuna and turnip has resulted in the establishment of Mibuna.

16.
Anal Chem ; 81(15): 6165-74, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19522513

RESUMO

We describe a sheath flow capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) method in the negative mode using a platinum electrospray ionization (ESI) spray needle, which allows the comprehensive analysis of anionic metabolites. The material of the spray needle had significant effect on the measurement of anions. A stainless steel spray needle was oxidized and corroded at the anodic electrode due to electrolysis. The precipitation of iron oxides (rust) plugged the capillary outlet, resulting in shortened capillary lifetime. Many anionic metabolites also formed complexes with the iron oxides or migrating nickel ion, which was also generated by electrolysis and moved toward the cathode (the capillary inlet). The metal-anion complex formation significantly reduced detection sensitivity of the anionic compounds. The use of a platinum ESI needle prevented both oxidation of the metals and needle corrosion. Sensitivity using the platinum needle increased from several- to 63-fold, with the largest improvements for anions exhibiting high metal chelating properties such as carboxylic acids, nucleotides, and coenzyme A compounds. The detection limits for most anions were between 0.03 and 0.87 micromol/L (0.8 and 24 fmol) at a signal-to-noise ratio of 3. This method is quantitative, sensitive, and robust, and its utility was demonstrated by the analysis of the metabolites in the central metabolic pathways extracted from mouse liver.


Assuntos
Ânions/análise , Eletroforese Capilar/métodos , Hepatócitos/efeitos dos fármacos , Espectrometria de Massas , Metabolômica , Animais , Biomarcadores/análise , Hepatócitos/citologia , Hepatócitos/metabolismo , Camundongos , Platina/química , Sensibilidade e Especificidade , Aço Inoxidável/química
17.
J Radiat Res ; 50(5): 469-75, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19628926

RESUMO

The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular/efeitos da radiação , Senescência Celular/efeitos da radiação , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Células Endoteliais/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/efeitos da radiação
18.
Nutrition ; 58: 110-119, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391689

RESUMO

OBJECTIVES: Perioperative nutritional management is essential for early recovery after liver surgery. The aim of this study was to assess changes in amino acid levels in serum and urine after hepatectomy. METHODS: Serum samples were collected from 16 patients with hepatocellular carcinoma before and 1, 3, and 14 d after hepatectomy (S0, S1, S3, and S14, respectively). Spot urine samples were collected before and 3 d after the hepatectomy (U0 and U3). Metabolites in the serum and urine were analyzed. RESULTS: Compared with S0, insulin levels significantly increased in the S1 and S3 samples. Valine levels significantly decreased in S1 and S14, and leucine levels significantly decreased in S14. Phenylalanine levels significantly increased in S1 and S3, and tyrosine levels significantly increased in S1. The Fischer ratio (branched-chain/aromatic amino acids) significantly decreased in S1 and S3. In multiple regression analysis, changes in serum taurine levels were related to the white blood cell count in S1 and S3, and inversely related to alanine aminotransferase levels in S14. Changes in serum glutamine levels were negatively related to C-reactive protein levels in S3. Serum glutamine levels decreased in S3 and S14, and tended to increase in U3, suggesting a deficiency of glutamate resulting from the invasive surgical procedure. CONCLUSIONS: These findings highlight the usefulness of metabolome analysis for characterizing perioperative patterns after liver resection. The observed amino acid pattern, including the reduction in Fischer ratio, underscores the need for specialized nutritional support.


Assuntos
Carcinoma Hepatocelular/cirurgia , Hepatectomia , Neoplasias Hepáticas/cirurgia , Metaboloma , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/urina , Idoso , Feminino , Humanos , Fígado/cirurgia , Masculino , Assistência Perioperatória/métodos
19.
Oncogene ; 38(14): 2464-2481, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30532069

RESUMO

Tumor recurrence is attributable to cancer stem-like cells (CSCs), the metabolic mechanisms of which currently remain obscure. Here, we uncovered the critical role of folate-mediated one-carbon (1C) metabolism involving mitochondrial methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and its downstream purine synthesis pathway. MTHFD2 knockdown greatly reduced tumorigenesis and stem-like properties, which were associated with purine nucleotide deficiency, and caused marked accumulation of 5-aminoimidazole carboxamide ribonucleotide (AICAR)-the final intermediate of the purine synthesis pathway. Lung cancer cells with acquired resistance to the targeted drug gefitinib, caused by elevated expression of components of the ß-catenin pathway, exhibited increased stem-like properties and enhanced expression of MTHFD2. MTHFD2 knockdown or treatment with AICAR reduced the stem-like properties and restored gefitinib sensitivity in these gefitinib-resistant cancer cells. Moreover, overexpression of MTHFD2 in gefitinib-sensitive lung cancer cells conferred resistance to gefitinib. Thus, MTHFD2-mediated mitochondrial 1C metabolism appears critical for cancer stem-like properties and resistance to drugs including gefitinib through consumption of AICAR, leading to depletion of the intracellular pool of AICAR. Because CSCs are dependent on MTHFD2, therapies targeting MTHFD2 may eradicate tumors and prevent recurrence.


Assuntos
Aminoidrolases/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Gefitinibe/farmacologia , Redes e Vias Metabólicas/fisiologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/metabolismo , Enzimas Multifuncionais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Purinas/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ribonucleotídeos/metabolismo , beta Catenina/metabolismo
20.
Sci Rep ; 9(1): 18859, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827136

RESUMO

Metabolism is a critical regulator of cell fate determination. Recently, the significance of metabolic reprogramming in environmental adaptation during tumorigenesis has attracted much attention in cancer research. Recurrent mutations in the isocitrate dehydrogenase (IDH) 1 or 2 genes have been identified in several cancers, including intrahepatic cholangiocarcinoma (ICC). Mutant IDHs convert α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), which affects the activity of multiple α-KG-dependent dioxygenases including histone lysine demethylases. Although mutant IDH can be detected even in the early stages of neoplasia, how IDH mutations function as oncogenic drivers remains unclear. In this study, we aimed to address the biological effects of IDH1 mutation using intrahepatic biliary organoids (IBOs). We demonstrated that mutant IDH1 increased the formation of IBOs as well as accelerated glucose metabolism. Gene expression analysis and ChIP results revealed the upregulation of platelet isoform of phosphofructokinase-1 (PFKP), which is a rate-limiting glycolytic enzyme, through the alteration of histone modification. Knockdown of the Pfkp gene alleviated the mutant IDH1-induced increase in IBO formation. Notably, the high expression of PFKP was observed more frequently in patients with IDH-mutant ICC compared to in those with wild-type IDH (p < 0.01, 80.9% vs. 42.5%, respectively). Furthermore, IBOs expressing mutant IDH1 survived the suppression of ATP production caused by growth factor depletion and matrix detachment by retaining high ATP levels through 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Our findings provide a systematic understanding as to how mutant IDH induces tumorigenic preconditioning by metabolic rewiring in intrahepatic cholangiocytes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Sistema Biliar/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Fosfofrutoquinase-1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Ciclo do Ácido Cítrico , Regulação da Expressão Gênica , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Camundongos , Fosfofrutoquinase-1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa