Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Pharmacol Sci ; 144(3): 129-138, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32921394

RESUMO

The traditional Japanese (Kampo) medicines yokukansan (YKS) and yokukansankachimpihange (YKSCH) have similar formulas and the same indications. In animals or cultured cells, the neuropharmacological actions of YKS are sometimes more beneficial than those of YKSCH. Since both drugs are used to treat sleep disorders in Japan, we examined the ameliorative effects of YKS and YKSCH on circadian rhythm disturbance and compared their efficacy using a mouse model of circadian rhythm disruption. Ramelteon was used as the positive control. Ramelteon treatment significantly reversed decreased running wheel activity during the advanced dark phase, indicating facilitation of circadian adaptation. YKS treatment also reversed the activity in the early period of drug treatment; however, it was not statistically significant. YKSCH treatment significantly reversed the decreased activity during the advanced dark phase. Plasma melatonin (MT) levels were significantly increased in the YKSCH but not in the YKS group. The ameliorative effect of YKSCH on rhythm disruption was significantly inhibited by coadministration of the MT2 receptor antagonist. Therefore, the therapeutic effect of YKSCH on circadian rhythm disruption would be attributable, to elevated endogenous MT levels. Taken together, YKS and YKSCH have different pharmacological properties and may be more precisely prescribed depending on patients' psychological symptoms.


Assuntos
Adaptação Biológica/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Kampo , Melatonina/metabolismo , Fitoterapia , Transtornos do Sono-Vigília/tratamento farmacológico , Animais , Masculino , Melatonina/sangue , Camundongos Endogâmicos C3H , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia
2.
Molecules ; 24(1)2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597998

RESUMO

Several basic pharmacokinetic and pharmacological studies were conducted as part of a group of studies to clarify the drug-drug interaction (DDI) between memantine (MEM), a drug used to treat Alzheimer's disease, and yokukansan (YKS), a traditional Japanese Kampo medicine used to treat behavioral and psychological symptoms of dementia. The pharmacokinetic studies showed that there were no statistically significant differences in MEM concentrations in the plasma, brain, and urine between mice treated with MEM alone and with MEM plus YKS. Regarding candidate active ingredients of YKS, there were also no statistically significant differences in concentrations of geissoschizine methyl ether in the plasma and brain, urine, glycyrrhetinic acid in the plasma, and isoliquiritigenin in the urine, in mice treated with YKS alone or with MEM plus YKS. The pharmacological studies showed that isoliquiritigenin, which has an N-methyl-d-aspartic acid (NMDA) receptor antagonistic effect, did not affect the inhibitory effect of MEM on NMDA-induced intracellular Ca2+ influx in primary cultured rat cortical neurons. Moreover, YKS did not affect either the ameliorative effects of MEM on NMDA-induced learning and memory impairment, or the MEM-induced decrease in locomotor activities in mice. These results suggest that there is probably no pharmacokinetic or pharmacological interaction between MEM and YKS in mice, but more detailed studies are needed in the future. Our findings provide important information for future studies, to clarify the DDI more regarding the efficacy and safety of combined use of these drugs in a clinical situation.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Interações Ervas-Drogas , Memantina/farmacologia , Animais , Cálcio/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Feminino , Espaço Intracelular/metabolismo , Aprendizagem/efeitos dos fármacos , Medicina Kampo , Memantina/farmacocinética , Memória/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato , Distribuição Tecidual
3.
Biol Pharm Bull ; 39(1): 104-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26725433

RESUMO

The aim of the present study was to investigate the effects of the traditional Japanese medicine yokukansan (YKS) on the function of dopamine (DA) in the rat nigrostriatal system. Unilateral 6-hydroxydopamine lesions were produced in the rat nigrostriatal system. Despite a marked loss in the striatal immunoreactivity of tyrosine hydroxylase on the lesion side, striatal serotonin (5-HT) immunoreactivity was not affected. Treatment using L-3,4-dihydroxyphenylalanine (L-DOPA) in conjunction with benserazide for 15 d induced abnormal involuntary movements (AIMs) such as locomotive (rotational response), axial, forelimb, and orolingual movements in the lesioned rats. The L-DOPA-induced locomotive and axial, but not forelimb and orolingual, AIMs were significantly increased and prolonged by the pre-administration of YKS. We next investigated the effects of YKS on the production of DA from L-DOPA in 5-HT synthetic RIN 14B cells. RIN 14B cells produced DA and its metabolite, 3-methoxytyramine (3-MT), following L-DOPA treatment. YKS significantly augmented DA production and inhibited its metabolism to 3-MT in a manner similar to the catechol-O-methyltransferase (COMT) inhibitor entacapone. YKS and some alkaloids (corynoxeine: CX, geissoschizine methyl ether: GM) in Uncaria hook, a constituent herb of YKS, also inhibited COMT activity, indicating that the augmenting effect of YKS on L-DOPA-induced DA production in 5-HT synthetic cells was due to the inhibition of COMT by CX and GM. Our results suggest that YKS facilitates the DA supplemental effect of L-DOPA, and that COMT inhibition by CX and GM contributes, at least in part, to the effects of YKS.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Levodopa/farmacologia , Medicina Tradicional do Leste Asiático , Oxidopamina/toxicidade , Animais , Benserazida/farmacologia , Catecóis/farmacologia , Linhagem Celular , Corpo Estriado/efeitos dos fármacos , Dopamina/análogos & derivados , Dopamina/farmacologia , Hidrazinas/farmacologia , Masculino , Nitrilas/farmacologia , Pargilina/farmacologia , Ratos , Ratos Wistar
4.
Cell Mol Neurobiol ; 33(1): 129-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22968712

RESUMO

Effects of seven alkaloids, geissoschizine methyl ether (GM), hirsutine, hirsuteine, rhynchophylline, isorhynchophylline, corynoxeine and isocorynoxeine, in Uncaria hook, a constituent of the kampo medicine yokukansan, on serotonin(7) (5-HT(7)) receptor were investigated using Chinese hamster ovary (CHO) cell membranes and human embryonic kidney 293 (HEK293) cells stably expressing the human recombinant 5-HT(7) receptor. A competitive binding assay using CHO membranes showed that GM (IC(50) = 0.034 µM) more strongly inhibited the binding of the radioligand [(3)H] LSD to 5-HT(7) receptor than the other alkaloids, suggesting that GM is bound to 5-HT(7) receptor. Agonistic/antagonistic effects of GM (1-50 µM) on the receptor were evaluated by measuring intracellular cAMP levels in HEK239 cells. GM (IC(50) = 6.0 µM) inhibited 5-HT-induced cAMP production in a concentration-dependent manner, as well as the specific 5-HT(7) receptor antagonist SB-269970 (0.1-1 µM). However, GM did not induce intracellular cAMP production as 5-HT did. These results suggest that GM has an antagonistic effect on 5-HT(7) receptor.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Alcaloides Indólicos/farmacologia , Indóis/farmacologia , Receptores de Serotonina/metabolismo , Uncaria , Animais , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes/metabolismo , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia
5.
Biomed Chromatogr ; 27(12): 1647-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23813572

RESUMO

Uncaria Hook (UH) alkaloids are involved in the beneficial effects of Yokukansan. However, the pharmacokinetics of UH alkaloids after oral administration of Yokukansan has not yet been sufficiently investigated. Therefore, we developed and validated a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantitation of seven UH alkaloids (corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether) in rat plasma and brain. After protein precipitation with acetonitrile, chromatographic separation was performed using an Ascentis Express RP-amide column, with gradient elution with 0.2% formic acid and acetonitrile at 0.3 mL/min. All analytes in the plasma and brain showed good linearity over a wide concentration range (r > 0.995). Intra-day and inter-day variations of each constituent were 8.6 and 8.0% or less in the plasma, and 14.9 and 15.0% or less in the brain, respectively. The validated LC/MS/MS method was applied in the pharmacokinetic studies of UH alkaloids after oral administration of Yokukansan to rats. In the plasma, rhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether were detected, but only geissoschizine methyl ether was detected in the brain. These results suggest that geissoschizine methyl ether is an important constituent of the pharmacological effects of Yokukansan.


Assuntos
Alcaloides/química , Química Encefálica , Medicamentos de Ervas Chinesas/administração & dosagem , Indóis/química , Uncaria/química , Alcaloides/análise , Alcaloides/sangue , Animais , Cromatografia Líquida de Alta Pressão/métodos , Indóis/análise , Indóis/sangue , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-37899908

RESUMO

Shoseiryuto (SST) (Xiao-Qing-Long-Tang in Chinese) is an effective treatment for respiratory diseases, such as bronchial asthma and allergic rhinitis, but its effects on the bronchial tight-junction (TJ) barrier have not been clarified. This study aimed to evaluate the effect of SST on TJ-barrier function in human bronchial epithelial (16HBE) cells. The 16HBE cells were cultured in a culture medium without (control) and with SST in the absence and presence of bacterial endotoxin lipopolysaccharide (LPS) in transwell chambers. Transepithelial electrical resistance (TEER) and sodium fluorescein (Na-F) permeability of the cultured-cell monolayer were measured as TJ integrity markers. In addition, immunofluorescence staining and quantitative real-time polymerase chain reaction analysis were used to measure the expression of the TJ protein, occludin. SST increased TEER and decreased Na-F permeability of the 16HBE cell monolayers. Furthermore, SST increased both occludin mRNA and immunostained protein expressions, suggesting that SST has the effect of directly promoting epithelial TJ-barrier function. LPS decreased TEER, increased Na-F permeability, and decreased both occludin mRNA and protein expression. LPS-induced barrier dysfunction was completely blocked by pre/co- and posttreatment with SST. These results suggest that SST has protective and therapeutic effects against LPS-induced TJ-barrier damage. To our knowledge, these are the first results to demonstrate the protective and therapeutic effects conferred by TJ-barrier promoting, which may be a novel mechanism contributing to the efficacy of SST for respiratory diseases.

7.
Cell Mol Neurobiol ; 32(7): 1139-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22488528

RESUMO

18ß-Glycyrrhetinic acid (GA) is a major metabolite of glycyrrhizin (GL), which is one of the components of glycyrrhiza root, a constituent herb of the traditional Japanese medicine yokukansan. It is well known that most GL is metabolized to GA in the intestine by bacteria. A previous in vitro study using cultured rat cortical astrocytes suggested that GA activates glutamate transport, which is a putative mechanism of the psychotropic effect of yokukansan. To activate the glutamate transport in the brain, GA must be absorbed into the blood after oral administration of yokukansan and then cross the blood-brain barrier (BBB) to reach the brain. However, there is no data on the BBB permeability of GA derived from yokukansan. In the present study, the BBB permeability of GA was investigated in both in vivo and in vitro studies. In the in vivo study, GA was detected in the plasma, brain, and cerebrospinal fluid of rats orally administered yokukansan. In the in vitro study using a BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes, the permeability rate and apparent permeability coefficient of GA were found to be 13.3 ± 0.5 % and 16.5 ± 0.7 × 10(-6) cm/s. These in vivo and in vitro results suggest that GL in orally administered yokukansan is absorbed into the blood as GA, and then reaches the brain through the BBB. This evidence further supports the possibility that GA is an active component in the psychotropic effect of yokukansan.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Medicamentos de Ervas Chinesas/metabolismo , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza , Medicina Tradicional do Leste Asiático , Raízes de Plantas , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Ácido Glicirretínico/isolamento & purificação , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/isolamento & purificação , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Japão , Masculino , Ratos , Ratos Sprague-Dawley
8.
Artigo em Inglês | MEDLINE | ID: mdl-36212959

RESUMO

Inchinkoto (ICKT), a traditional herbal medicine that is often used as a hepatoprotective drug in Japan, has pharmacological properties that include antioxidant, anti-inflammatory, and choleretic actions. Genipin is a metabolite of geniposide and the most abundant ingredient of ICKT; furthermore, it is considered to be the active substance responsible for its pharmacological properties in the liver. Drugs with such pharmacological characteristics are expected to prevent intestinal barrier dysfunction, which causes inflammatory bowel diseases (IBDs). However, no studies have investigated the effects of ICKT on the intestinal epithelial barrier. Therefore, we investigated the activity of ICKT in intestinal tight junctions by using cultured Caco-2 cell monolayers. The action of the compound on tight junctions was examined by measuring transepithelial electrical resistance (TEER) and sodium fluorescein (Na-F) permeability in the presence or absence of lipopolysaccharide (LPS). Moreover, the expression of the tight junction protein claudin-1 was assessed by using immunofluorescent staining. ICKT and genipin increased TEER and decreased Na-F permeability, which was suggestive of enhanced intestinal epithelial barrier function. Moreover, they prevented the LPS-induced destruction of the barrier, i.e., a decrease in TEER and an increase in Na-F permeability. Immunofluorescence staining revealed a high claudin-1 expression level on the cell surface, whereas exposure to LPS downregulated claudin-1. In turn, ICKT and genipin prevented the LPS-mediated reduction of claudin-1. These results suggest that ICKT enhances intestinal epithelial barrier function by upregulating claudin-1. Furthermore, genipin contributed to these effects. ICKT may be a promising medicine for the prevention and treatment of diseases associated with intestinal barrier disruption, such as IBD, obesity, and metabolic disorders.

9.
Cell Mol Neurobiol ; 31(8): 1203-12, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21691759

RESUMO

Effects of a traditional Japanese medicine, yokukansan, which is composed of seven medicinal herbs, on glutamate-induced cell death were examined using primary cultured rat cortical neurons. Yokukansan (10-300 µg/ml) inhibited the 100 µM glutamate-induced neuronal death in a concentration-dependent manner. Among seven constituent herbs, higher potency of protection was found in Uncaria thorn (UT) and Glycyrrhiza root (GR). A similar neuroprotective effect was found in four components (geissoschizine methyl ether, hirsuteine, hirsutine, and rhynchophylline) in UT and four components (glycycoumarin, isoliquiritigenin, liquiritin, and 18ß-glycyrrhetinic acid) in GR. In the NMDA receptor binding and receptor-linked Ca(2+) influx assays, only isoliquiritigenin bound to NMDA receptors and inhibited the glutamate-induced increase in Ca(2+) influx. Glycycoumarin and 18ß-glycyrrhetinic acid bound to NMDA receptors, but did not inhibit the Ca(2+) influx. The four UT-derived components did not bind to NMDA receptors. The present results suggest that neuroprotective components (isoliquiritigenin, glycycoumarin, liquiritin, and 18ß-glycyrrhetinic acid in GR and geissoschizine methyl ether, hirsuteine, hirsutine, and rhynchophylline in UT) are contained in yokukansan, and isoliquiritigenin, which is one of them, is a novel NMDA receptor antagonist.


Assuntos
Chalconas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Medicina Kampo , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/química , Ácido Glutâmico/toxicidade , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Plantas Medicinais/química , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Cell Mol Neurobiol ; 31(5): 787-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21442303

RESUMO

Geissoschizine methyl ether (GM) in Uncaria hook, a galenical constituent of yokukansan is thought to be one of active components in the psychotropic effect of yokukansan, a traditional Japanese medicine (kampo medicine). However, there is no data on the blood-brain barrier (BBB) permeability of Uncaria hook-derived alkaloids containing GM. In this study, we investigated the BBB permeability of seven Uncaria hook alkaloids (GM, isocorynoxeine, isorhynchophylline, hirsuteine, hirsutine, rhynchophylline, and corynoxeine) using in vivo and in vitro methods. In the in vivo experiment, seven alkaloids in the plasma and brain of rats orally administered with yokukansan were measured by liquid chromatography-mass spectroscopy/mass spectrometric multiple reaction monitoring assay. In the in vitro experiment, the BBB permeability of seven alkaloids were examined using the BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes. In the in vivo study, six components containing GM but not isocorynoxeine were detected in the plasma, and three (GM, hirsuteine, and corynoxeine) of components were detected in the brain. The in vitro BBB permeability data indicated that seven alkaloids were able to cross brain endothelial cells in culture conditions and that the BBB permeability of GM was higher than those of the other six alkaloids. These results suggest that target ingredient GM in yokukansan administered orally is absorbed into the blood and then reaches the brain through the BBB. This evidence further supports the possibility that GM is an active component in the psychotropic effect of yokukansan.


Assuntos
Barreira Hematoencefálica/metabolismo , Medicamentos de Ervas Chinesas/química , Indóis/metabolismo , Medicina Tradicional do Leste Asiático , Uncaria/química , Administração Oral , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Impedância Elétrica , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Alcaloides Indólicos , Indóis/sangue , Indóis/química , Indóis/farmacologia , Japão , Modelos Biológicos , Permeabilidade/efeitos dos fármacos , Ratos
11.
Phytother Res ; 25(4): 501-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20803480

RESUMO

The effects of yokukansan and donepezil on learning disturbance and aggressiveness were examined in amyloid ß protein (Aß)-injected mice. Intellicage tests showed that both yokukansan and donepezil ameliorated Aß-induced learning disturbance, but the ameliorating effect of donepezil was not enhanced by concomitant administration of yokukansan. On the other hand, a social interaction test showed that Aß-induced aggressiveness was ameliorated by yokukansan, but not by donepezil. Co-administration of both drugs also ameliorated aggressiveness, as did yokukansan alone. In vitro binding assays revealed that yokukansan did not bind to choline receptors or transporters. In vitro enzyme assays revealed that yokukansan did not affect choline acetyltransferase activity or inhibit acetylcholinesterase activity, as did donepezil. These results suggest that yokukansan might ameliorate aggressiveness without interfering with the pharmacological efficacy (antidementia effect) of donepezil and also that concomitant administration of yokukansan might be useful for amelioration of aggressiveness, which was not lessened by donepezil. The difference in the efficacies of both drugs may be due to a difference in their pharmacological mechanisms.


Assuntos
Agressão/efeitos dos fármacos , Peptídeos beta-Amiloides/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Indanos/farmacologia , Aprendizagem/efeitos dos fármacos , Piperidinas/farmacologia , Animais , Células CHO , Colina/metabolismo , Cricetinae , Cricetulus , Donepezila , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Indanos/administração & dosagem , Injeções Intraventriculares , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Piperidinas/administração & dosagem , Ligação Proteica , Ratos , Receptores de Superfície Celular/metabolismo
12.
Front Pharmacol ; 12: 688670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335255

RESUMO

Uncaria Hook (UH) is a dry stem with hook of Ucaria plant and is contained in Traditional Japanese and Chinese medicine such as yokukansan, yokukansankachimpihange, chotosan, Gouteng-Baitouweng, and Tianma-Gouteng Yin. UH contains active indole and oxindole alkaloids and has the therapeutic effects on ailments of the cardiovascular and central nervous systems. The recent advances of analytical technology led to reports of detailed pharmacokinetics of UH alkaloids. These observations of pharmacokinetics are extremely important for understanding the treatment's pharmacological activity, efficacy, and safety. This review describes properties, pharmacology, and the recently accumulated pharmacokinetic findings of UH alkaloids, and discusses challenges and future prospects. UH contains major indole and oxindole alkaloids such as corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsuteine, hirsutine, and geissoschizine methyl ether (GM). These alkaloids exert neuroprotective effects against Alzheimer's disease, Parkinson's disease, and depression, and the mechanisms of these effects include anti-oxidant, anti-inflammatory, and neuromodulatory activities. Among the UH alkaloids, GM exhibits comparatively potent pharmacological activity (e.g., agonist activity at 5-HT1A receptors). UH alkaloids are absorbed into the blood circulation and rapidly eliminated when orally administered. UH alkaloids are predominantly metabolized by Cytochrome P450 (CYP) and converted into various metabolites, including oxidized and demethylated forms. Regarding GM metabolism by CYPs, a gender-dependent difference is observed in rats but not in humans. Several alkaloids are detected in the brain after passing through the blood-brain barrier in rats upon orally administered. GM is uniformly distributed in the brain and binds to various channels and receptors such as the 5-HT receptor. By reviewing the pharmacokinetics of UH alkaloids, challenges were found, such as differences in pharmacokinetics between pure drug and crude drug products administration, food-influenced absorption, metabolite excretion profile, and intestinal tissue metabolism of UH alkaloids. This review will provide readers with a better understanding of the pharmacokinetics of UH alkaloids and their future challenges, and will be helpful for further research on UH alkaloids and crude drug products containing UH.

13.
J Ethnopharmacol ; 264: 113354, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32898626

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Geissoschizine methyl ether (GM), an indole alkaloid from Uncaria hook, is an active ingredient in the traditional Japanese Kampo medicine yokukansan, which is used to treat neurosis, insomnia, irritability, and night crying in children. AIM OF THE STUDY: Recent our pharmacokinetic studies suggested that there may be gender differences in the plasma concentrations of GM in rats, but not in humans. However, the details of this difference remain unverified. The purpose of this study was to clarify the reasons for the gender differences in rats. MATERIALS AND METHODS: GM plasma pharmacokinetics was compared in male and female rats orally administered yokukansan (4 g/kg). To confirm the involvement of cytochrome P450 (CYP) in GM liver metabolism, GM was incubated with male and female rat liver S9 fraction in the absence or presence of 1-aminobenzotriazole (a nonspecific CYP inhibitor). CYP isoforms involved in GM metabolism were estimated using recombinant rat CYP isoforms and anti-rat CYP antibodies. RESULTS: The maximum GM plasma concentrations were significantly higher in female than in male rats. When GM was incubated with rat liver S9 fractions, GM reduction was more striking in male S9 (69.3%) than that in female S9 (10.0%) and was completely blocked with nonspecific CYP inhibitor 1-aminobenzotriazole. Screening experiments using recombinant rat cytochrome P450 (CYP) isoforms showed that CYP1A1, CYP2C6, CYP2C11, CYP2D1, and CYP3A2 were involved in GM metabolism. Of these CYP isoforms, the use of anti-rat CYP antibodies indicated that male-dependent CYP2C11 and CYP3A2 were predominantly involved in the liver microsomal GM metabolism with gender differences. CONCLUSIONS: These results suggest that the cause of gender differences in plasma GM pharmacokinetics in rats is most likely because of male-dependent CYP2C11 and CYP3A2, and provide also useful information to further evaluate the pharmacological and toxicological effects in future. This study is the first to demonstrate that the gender differences in plasma GM pharmacokinetics in rats are caused by the gender-dependent metabolism of GM.


Assuntos
Alcaloides Indólicos/sangue , Microssomos Hepáticos/efeitos dos fármacos , Caracteres Sexuais , Uncaria , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Alcaloides Indólicos/metabolismo , Alcaloides Indólicos/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Microssomos Hepáticos/enzimologia , Plasma/efeitos dos fármacos , Plasma/metabolismo , Ratos , Ratos Sprague-Dawley , Esteroide 16-alfa-Hidroxilase/metabolismo
14.
Neuropathology ; 30(5): 524-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20337951

RESUMO

We previously demonstrated that yokukansan ameliorated not only learning disturbance but also behavioral and psychological symptoms of dementia-like behaviors (anxiety, aggressiveness) and neurological symptoms (opisthotonus) induced in rats by dietary thiamine deficiency (TD). In the present study, the effects of yokukansan on degeneration of cerebral cells were further examined electron-microscopically during pre-symptomatic and symptomatic stages in TD rats. In the pre-symptomatic TD stage, which appeared as increase in aggressive behaviors on the 21st and 28th days of TD diet-feeding, severe edematous degeneration of astrocytes was detected by electron microscopy, although the changes were not observed by light microscopy. In the symptomatic TD stage (the 34th day) characterized by development of neurological symptoms, severe sponge-like degeneration and multiple hemorrhages in the parenchyma were obvious by light microscopy. The electron-microscopic examination showed degeneration in neurons, oligodendroglias, and myelin sheaths in addition to astrocytes. TD rats, which exhibited multiple hemorrhages light microscopically, showed severe edematous changes and hypertrophy of the foot processes of astrocytes surrounding blood vessels. Administration of yokukansan ameliorated not only the TD-induced aggressive behavior and neurological symptoms but also degeneration of the cerebral cells. These results suggest that the inhibitory effect of yokukansan on degeneration in various brain cells might be closely related to the amelioration of aggression and neurological symptoms in TD rats.


Assuntos
Tronco Encefálico/ultraestrutura , Medicamentos de Ervas Chinesas/administração & dosagem , Deficiência de Tiamina/patologia , Agressão/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Peso Corporal/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Masculino , Medicina Kampo , Microscopia Eletrônica , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Ratos , Ratos Wistar
15.
Sci Rep ; 10(1): 7293, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350314

RESUMO

Geissoschizine methyl ether (GM) is one of the main active ingredients responsible for ameliorating the behavioral and psychological symptoms of dementia (BPSD) in Kampo medicine yokukansan. GM is mainly metabolized into hydroxylated forms (HM-1/2). However, the brain distributions of GM and HM has not been reported in vivo. In this study, therefore, the plasma concentrations and brain distribution of these compounds were examined in vivo using rats injected intravenously with GM. Plasma concentrations were analyzed using liquid chromatography-tandem mass spectrometry analysis and brain distribution using mass spectrometry imaging analysis. Plasma GM and HM-1 concentrations decreased in the 4 h after injection, whereas the concentration of plasma HM-2 increased at 4 h. In the 0.25 h-brain, GM signals were diffusely observed throughout the brain, including the cerebral cortex, hippocampus, striatum, thalamus, amygdala, cerebellum, and cerebral ventricle. HM signals were detected only in the ventricles of the brain at 4 h. These results suggest that plasma GM enters the brain and distributes in the parenchyma of various brain regions involved in BPSD, while plasma HM does not enter the brain parenchyma. This study is also the first to visually demonstrate the brain distribution of GM and its metabolite in vivo.


Assuntos
Encéfalo , Alcaloides Indólicos , Espectrometria de Massas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Demência/diagnóstico por imagem , Demência/tratamento farmacológico , Demência/metabolismo , Feminino , Alcaloides Indólicos/farmacocinética , Alcaloides Indólicos/farmacologia , Ratos , Ratos Wistar , Fatores de Tempo
16.
J Neurochem ; 109(6): 1648-57, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457098

RESUMO

The deposition of amyloid beta (Abeta) protein is a consistent pathological hallmark of Alzheimer's disease (AD) brains; therefore, inhibition of Abeta fibril formation and destabilization of pre-formed Abeta fibrils is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. This study demonstrated that Paeonia suffruticosa, a traditional medicinal herb, not only inhibited fibril formation of both Abeta(1-40) and Abeta(1-42) but it also destabilized pre-formed Abeta fibrils in a concentration-dependent manner. Memory function was examined using the passive-avoidance task followed by measurement of Abeta burden in the brains of Tg2576 transgenic mice. The herb improved long-term memory impairment in the transgenic mice and inhibited the accumulation of Abeta in the brain. Three-dimensional HPLC analysis revealed that a water extract of the herb contained several different chemical compounds including 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose (PGG). No obvious adverse/toxic were found following treatment with PGG. As was observed with Paeonia suffruticosa, PGG alone inhibited Abeta fibril formation and destabilized pre-formed Abeta fibrils in vitro and in vivo. Our results suggest that both Paeonia suffruticosa and its active constituent PGG have strong inhibitory effects on formation of Abeta fibrils in vitro and in vivo. PGG is likely to be a safe and promising lead compound in the development of disease-modifying drugs to prevent and/or cure AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Taninos Hidrolisáveis/farmacologia , Memória/efeitos dos fármacos , Paeonia/química , Extratos Vegetais/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Fitoterapia/métodos , Fatores de Tempo
17.
Biol Pharm Bull ; 32(10): 1701-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19801831

RESUMO

Effects of yokukansan (TJ-54) on memory disturbance and behavioral and psychological symptoms of dementia (BPSD) were investigated in thiamine-deficient (TD) rats which were produced by feeding a TD diet for 37 d. Daily oral administration of TJ-54 (0.5, 1.0 g/kg) ameliorated the memory disturbance, anxiety-like behavior, the increase in aggressive behaviors, the decrease in social behaviors, and several neurological symptoms including opisthotonus observed in TD rats, in a dose-dependent manner. In addition, histopathological examinations showed that TJ-54 inhibited the degeneration of neuronal and astroglial cells in the brain stem, hippocampus and cortex in TD rats. Microdialysis experiments showed that TJ-54 inhibited extracellular glutamate rise in the ventral posterior medial thalamus in TD rats. These results suggest that TJ-54 possesses the preventive or progress inhibitive effect against the development of memory disturbance and BPSD-like behaviors induced by the degeneration of neuronal and astroglial cells resulting from TD. TJ-54 may inhibit glutamate-mediated excitotoxicity as one of mechanisms.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Demência/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Fitoterapia , Deficiência de Tiamina/tratamento farmacológico , Agressão/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Demência/etiologia , Demência/psicologia , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Fungos , Ácido Glutâmico/metabolismo , Magnoliopsida , Masculino , Medicina Tradicional do Leste Asiático , Medicina Kampo , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar , Comportamento Social , Deficiência de Tiamina/complicações , Deficiência de Tiamina/patologia
18.
J Pharm Pharmacol ; 61(9): 1249-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19703376

RESUMO

OBJECTIVES: Yokukansan, a traditional Japanese medicine, has been approved by the Ministry of Health, Labour, and Welfare of Japan as a remedy for neurosis, insomnia or night crying and irritability in children. It has recently been reported to improve behavioural and psychological symptoms of dementia, such as hallucinations, agitation, and aggressiveness in patients with some forms of senile dementia. Little is known about the mechanism underlying the effectiveness of yokukansan. Our aim was to clarify the involvement of yokukansan in serotonergic function in para-chloroamphetamine (PCA)-induced aggressive behaviour in rats. METHODS: The effect of yokukansan on social interactions, including social and aggressive behaviour, was examined in PCA-injected rats. Concentration and release level of serotonin (5-HT) in the hypothalamus were measured. KEY FINDINGS: PCA reduced not only the 5-HT concentration but also the high K(+)-induced 5-HT release in the rat hypothalamus. Social interaction tests showed a significant decrease in social behaviour and a significant increase in aggressive behaviour in the PCA-treated rats. The decrease in social behaviour was ameliorated by the 5-HT1A agonist buspirone and further decreased by a 5-HT1A antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclo-hexanecarboxamide trihydrochloride (WAY-100635), whereas it was further decreased by the 5-HT2A agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), and ameliorated by the 5-HT2A antagonist ketanserin. On the other hand, the increase in aggressive behaviour was ameliorated by buspirone but not affected by WAY-100635, whereas it was enhanced by DOI and ameliorated by ketanserin. A single injection of yokukansan ameliorated the PCA-induced decrease in social behaviour but not aggressive behaviour. Chronic treatment for 14 days with yokukansan ameliorated PCA-induced abnormal behaviour, decreased social behaviour and increased aggressive behaviour, but it did not ameliorate PCA-induced decreases in the cerebral 5-HT concentration and 5-HT release. The ameliorative effects of chronic yokukansan on behaviour were counteracted by co-administration of WAY-100635. CONCLUSIONS: These results suggest that yokukansan might have two different effects: an acute effect on social behaviour and a chronic effect on aggressive behaviour. One of the mechanisms of these effects of yokukansan may be related to the agonistic effect on 5-HT1A receptors.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Comportamento Social , p-Cloroanfetamina/farmacologia , Animais , Interações Medicamentosas , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Japão , Masculino , Medicina Tradicional do Leste Asiático , Potássio/farmacologia , Ratos , Ratos Wistar , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Fatores de Tempo
19.
Phytother Res ; 23(8): 1175-81, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19165748

RESUMO

The effects of yokukansan, a traditional Japanese medicine, on aggressiveness and motor activities were examined in mice after injection of amyloid beta protein (Abeta) into the lateral ventricle of the brain. The results were compared with those of conventional (haloperidol) and atypical (risperidone) antipsychotic medicines. A significant increase in aggressiveness was observed on day 7 after injection of Abeta, and it lasted until day 28. A single oral administration of yokukansan (1.0 g/kg) did not ameliorate the aggressiveness observed on day 7. However, a tendency toward amelioration of the aggressiveness was observed after the administration of yokukansan (0.5 and 1.0 g/kg) for 1 week (days 7-14). The 3 week administration (days 7-28) of yokukansan significantly ameliorated the aggressiveness in a dose-dependent manner without inhibition of motor activity. In contrast, a single administration of intraperitoneal haloperidol (0.03-0.1 mg/kg) or oral risperidone (0.1-0.3 mg/kg) on day 28 significantly reduced aggressiveness in a dose-dependent manner. However, motor activities were significantly suppressed. These results suggest yokukansan reduces aggressiveness without suppressing physical activity.


Assuntos
Agressão/efeitos dos fármacos , Peptídeos beta-Amiloides/farmacologia , Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Animais , Relação Dose-Resposta a Droga , Haloperidol/farmacologia , Masculino , Medicina Tradicional , Camundongos , Atividade Motora/efeitos dos fármacos , Risperidona/farmacologia
20.
Curr Med Chem ; 25(9): 1036-1045, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28322152

RESUMO

BACKGROUND: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symptoms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. OBJECTIVE: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor subtypes in the brains using our own data and previous findings. METHOD: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. RESULTS: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5- HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was metabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5- HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cortex. CONCLUSION: These results suggest that GM is a pharmacologically important alkaloid that regulates various serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS.


Assuntos
Alcaloides Indólicos/metabolismo , Receptores de Serotonina/metabolismo , Uncaria/química , Animais , Ligação Competitiva , Encéfalo/metabolismo , Medicamentos de Ervas Chinesas/química , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Ligação Proteica , Ratos , Receptores de Serotonina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa