Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Endocr J ; 69(9): 1101-1108, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35387941

RESUMO

Hypertriglyceridemia is caused not only by environmental factors but also by genetic factors. Severe hypertriglyceridemia is prone to complications of acute pancreatitis. Here, we report a whole-exome sequencing (WES) analysis for a young hypertriglyceridemic patient with recurrent acute pancreatitis and the patient's mother. A 28-year-old hypertriglyceridemic female was admitted to our hospital. At 23 years old, a health checkup clarified her hypertriglyceridemia. At the age of 26 and 27, she had repeated acute pancreatitis with severe hypertriglyceridemia (serum triglyceride level were 3,888 mg/dL and 12,080 mg/dL, respectively). The patient's BMI was 29.0 kg/m2, and blood samples under fibrate medication showed triglyceride 451 mg/dL and HbA1c 7.2%. Type V dyslipidemia became more apparent at postprandial state. The WES analysis showed that the patients had two heterozygous variants in Apolipoprotein A5 (APOA5) gene (p.G185C and p.V153M), a heterozygous variant in Apolipoprotein E (APOE) gene (p.R176C), three heterozygous variants in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene (p.T1220I, p.R1453W and p.V470M). On the other hand, her mother, who had moderate hypertriglyceridemia without acute pancreatitis, had a heterozygous variant in APOA5 gene (p.G185C) and two heterozygous variants in CFTR gene (p.T1220I and p.V470M). These results suggest that the more severe pathology of the patient than her mother might be due to the possible compound heterozygous APOA5 variants, the heterozygous APOE variant, and the possible compound heterozygous CFTR variants. In this case, WES analyses were useful to evaluate not only the causative genes of hypertriglyceridemia (APOA5 and APOE) but also the genes involved in the development of acute pancreatitis (CFTR) simultaneously.


Assuntos
Hipertrigliceridemia , Pancreatite , Doença Aguda , Adulto , Apolipoproteína A-V/genética , Apolipoproteínas E/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Ácidos Fíbricos , Hemoglobinas Glicadas , Humanos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , Pancreatite/complicações , Pancreatite/genética , Triglicerídeos , Sequenciamento do Exoma , Adulto Jovem
2.
J Diabetes Investig ; 15(7): 843-850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459768

RESUMO

AIMS/INTRODUCTION: We aimed to evaluate factors that influence changes in blood low-density lipoprotein cholesterol (LDL-C) levels after treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors in Japanese patients with type 2 diabetes. MATERIALS AND METHODS: We retrospectively analyzed clinical data of outpatients newly initiated on SGLT2 inhibitors (n = 176) and other oral antidiabetic drugs (n = 227). The patients were classified into four subgroups according to statin administration and baseline LDL-C levels (<120 or ≥120 mg/dL). Clinical characteristics were compared among the subgroups. Multivariate analysis was carried out to identify factors contributing to changes in LDL-C. RESULTS: The median follow-up period was 13.0 weeks (range 11.9-14.1 weeks, min 8 weeks, maximum 16 weeks) in the SGLT2i group, and 12.0 weeks (range 10.0-14.0 weeks, min 8 weeks, maximum 16 weeks) in the control group. Both groups showed a significant decrease in LDL-C (SGLT2i group -3.8 ± 24.7 mg/dL, control group -3.4 ± 15.0 mg/dL). Multivariate regression analyses showed that in both groups, the change in LDL-C depended on statin use and baseline LDL-C levels. Stratified analyses showed that LDL-C level was significantly decreased in statin users with baseline LDL-C ≥120 mg/dL (from 148.9 ± 33.5 to 109.3 ± 17.9 mg/dL, P = 0.002), and significantly increased in statin non-users with baseline LDL-C <120 mg/dL (from 96.3 ± 27.3 to 104.7 ± 24.8 mg/dL, P = 0.002). These changes were more characteristic for SGLT2 inhibitors than for other oral antidiabetic drugs (P for interaction = 0.010 and <0.001, respectively). CONCLUSIONS: LDL-C levels and statin medication at baseline influence changes in LDL-C after SGLT2 inhibitors treatment in Japanese patients with type 2 diabetes.


Assuntos
LDL-Colesterol , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Masculino , LDL-Colesterol/sangue , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Japão/epidemiologia , Hipoglicemiantes/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Seguimentos , Biomarcadores/sangue , Glicemia/análise , População do Leste Asiático
3.
Sci Rep ; 13(1): 9260, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286698

RESUMO

ATP6AP2, also known as (pro)renin receptor, has been shown to be expressed in several tissues including pancreatic ß cells. Whereas ATP6AP2 plays an important role in regulating insulin secretion in mouse pancreatic ß cells, the expression profiles and roles of ATP6AP2 in human pancreatic endocrine cells and neuroendocrine tumor cells remain unclear. Here in this study, we investigated the expression profiles of ATP6AP2 in pancreatic endocrine cells, and found that ATP6AP2 is robustly expressed in pancreatic insulinoma cells as well as in normal ß cells. Although ATP6AP2 was also expressed in low-grade neuroendocrine tumors, it was not or faintly detected in intermediate- and high-grade neuroendocrine tumors. Knockdown experiments of the Atp6ap2 gene in rat insulinoma-derived INS-1 cells demonstrated decreased cell viability accompanied by a significant increase in apoptotic cells. Taken together, these findings suggest that ATP6AP2 plays a role in maintaining cellular homeostasis in insulinoma cells, which could lead to possible therapeutic approaches for endocrine tumors.


Assuntos
Células Secretoras de Insulina , Insulinoma , Tumores Neuroendócrinos , Neoplasias Pancreáticas , ATPases Vacuolares Próton-Translocadoras , Camundongos , Ratos , Animais , Humanos , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Insulinoma/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Sobrevivência Celular/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Receptores de Superfície Celular/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa