Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Biol Chem ; 299(11): 105294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774972

RESUMO

The glycoside hydrolase family 55 (GH55) includes inverting exo-ß-1,3-glucosidases and endo-ß-1,3-glucanases, acting on laminarin, which is a ß1-3/1-6-glucan consisting of a ß1-3/1-6-linked main chain and ß1-6-linked branches. Despite their different modes of action toward laminarin, endo-ß-1,3-glucanases share with exo-ß-1,3-glucosidases conserved residues that form the dead-end structure of subsite -1. Here, we investigated the mechanism of endo-type action on laminarin by GH55 endo-ß-1,3-glucanase MnLam55A, identified from Microdochium nivale. MnLam55A, like other endo-ß-1,3-glucanases, degraded internal ß-d-glucosidic linkages of laminarin, producing more reducing sugars than the sum of d-glucose and gentiooligosaccharides detected. ß1-3-Glucans lacking ß1-6-linkages in the main chain were not hydrolyzed. NMR analysis of the initial degradation of laminarin revealed that MnLam55A preferentially cleaved the nonreducing terminal ß1-3-linkage of the laminarioligosaccharide moiety at the reducing end side of the main chain ß1-6-linkage. MnLam55A liberates d-glucose from laminaritriose and longer laminarioligosaccharides, but kcat/Km values to laminarioligosaccharides (≤4.21 s-1 mM-1) were much lower than to laminarin (5920 s-1 mM-1). These results indicate that ß-glucan binding to the minus subsites of MnLam55A, including exclusive binding of the gentiobiosyl moiety to subsites -1 and -2, is required for high hydrolytic activity. A crystal structure of MnLam55A, determined at 2.4 Å resolution, showed that MnLam55A adopts an overall structure and catalytic site similar to those of exo-ß-1,3-glucosidases. However, MnLam55A possesses an extended substrate-binding cleft that is expected to form the minus subsites. Sequence comparison suggested that other endo-type enzymes share the extended cleft. The specific hydrolysis of internal linkages in laminarin is presumably common to GH55 endo-ß-1,3-glucanases.


Assuntos
Glicosídeo Hidrolases , beta-Glucanas , Glucanos/metabolismo , Glucose , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
2.
Physiol Plant ; 175(1): e13846, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36546699

RESUMO

Overwintering plants acquire substantial levels of freezing tolerance through cold acclimation or winter hardening. This process is essential for the plants survival to harsh winter conditions. In the areas where persistent snow cover lasts several months, plants are protected from freezing but are, however, exposed to other harsh conditions, such as dark, cold, and high humidity. These conditions facilitate the infection of psychrophilic pathogens, which are termed "snow molds." To fight against infection of snow molds, overwintering plants develop disease resistance via the process of cold acclimation. Compared with pathogen-induced disease resistance, the molecular mechanisms of cold-induced disease resistance have yet to be fully elucidated. In this review, we outline the recent progress in our understanding of disease resistance acquired through cold acclimation.


Assuntos
Aclimatação , Resistência à Doença , Plantas , Estações do Ano , Congelamento , Temperatura Baixa
3.
Biosci Biotechnol Biochem ; 87(7): 707-716, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37055368

RESUMO

Glycoside hydrolase family 3 (GH3) ß-glucosidase exists in many filamentous fungi. In phytopathogenic fungi, it is involved in fungal growth and pathogenicity. Microdochium nivale is a severe phytopathogenic fungus of grasses and cereals and is the causal agent of pink snow mold, but its ß-glucosidase has not been identified. In this study, a GH3 ß-glucosidase of M. nivale (MnBG3A) was identified and characterized. Among various p-nitrophenyl ß-glycosides, MnBG3A showed activity on d-glucoside (pNP-Glc) and slight activity on d-xyloside. In the pNP-Glc hydrolysis, substrate inhibition occurred (Kis = 1.6 m m), and d-glucose caused competitive inhibition (Ki = 0.5 m m). MnBG3A acted on ß-glucobioses with ß1-3, -6, -4, and -2 linkages, in descending order of kcat/Km. In contrast, the regioselectivity for newly formed products was limited to ß1-6 linkage. MnBG3A has similar features to those of ß-glucosidases from Aspergillus spp., but higher sensitivity to inhibitory effects.


Assuntos
Glicosídeo Hidrolases , beta-Glucosidase , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Glicosídeos/química , Fungos/metabolismo , Especificidade por Substrato , Cinética
4.
Biol Lett ; 18(5): 20210629, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506238

RESUMO

One of the characteristic aspects of odour sensing in humans is the activation of olfactory receptors in a slightly different manner in response to different enantiomers. Here, we focused on whether plants showed enantiomer-specific response similar to that in humans. We exposed Arabidopsis seedlings to methanol (control) and (+)- or (-)-borneol, and found that only (+)-borneol reduced the root length. Furthermore, the root-tip width was more increased upon (+)-borneol exposure than upon (-)-borneol exposure. In addition, root-hair formation was observed near the root tip in response to (+)-borneol. Auxin signalling was strongly reduced in the root tip following exposure to (+)-borneol, but was detected following exposure to (-)-borneol and methanol. Similarly, in the root tip, the activity of cyclin B1:1 was detected on exposure to (-)-borneol and methanol, but not on exposure to (+)-borneol, indicating that (+)-borneol inhibits the meristematic activity in the root. These results partially explain the (+)-borneol-specific reduction in the root length of Arabidopsis. Our results indicate the presence of a sensing system specific for (+)-borneol in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Canfanos , Humanos , Ácidos Indolacéticos/farmacologia , Meristema/fisiologia , Metanol , Raízes de Plantas/fisiologia
9.
Biosci Biotechnol Biochem ; 81(8): 1512-1519, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28537141

RESUMO

Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce ß-d-glucose 1-phosphate (ß-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, ß-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From ß-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Lactococcus lactis/enzimologia , Fosfatos Açúcares/biossíntese , Trealose/análogos & derivados , Trealose/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glucofosfatos/metabolismo , Glucosiltransferases/genética , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lactococcus lactis/química , Manosefosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fosfatos Açúcares/metabolismo , Temperatura
10.
Biochem Biophys Res Commun ; 460(3): 766-71, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25824047

RESUMO

The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.


Assuntos
Alquil e Aril Transferases/genética , Genes de Plantas , Oryza/genética , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cloroplastos/enzimologia , Primers do DNA , DNA Complementar , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
11.
Biochem Biophys Res Commun ; 456(1): 380-4, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25475723

RESUMO

The cold shock domain (CSD) is the most conserved nucleic acid binding domain and is distributed from bacteria to animals and plants. CSD proteins are RNA chaperones that destabilize RNA secondary structures to regulate stress tolerance and development. AtCSP2 is one of the four CSD proteins in Arabidopsis and is up-regulated in response to cold. Since AtCSP2 negatively regulates freezing tolerance, it was proposed to be a modulator of freezing tolerance during cold acclimation. Here, we examined the function of AtCSP2 in seed germination. We found that AtCSP2-overexpressing lines demonstrated retarded germination as compared with the wild type, with or without stress treatments. The ABA levels in AtCSP2-overexpressing seeds were higher than those in the wild type. In addition, overexpression of AtCSP2 reduced the expression of an ABA catabolic gene (CYP707A2) and gibberellin biosynthesis genes (GA20ox and GA3ox). These results suggest that AtCSP2 negatively regulates seed germination by controlling ABA and GA levels.


Assuntos
Ácido Abscísico/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinação , Proteínas de Ligação a RNA/metabolismo , Sementes/metabolismo , Proteínas e Peptídeos de Choque Frio/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/química , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , RNA de Plantas/metabolismo
12.
Biosci Biotechnol Biochem ; 79(5): 747-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25559339

RESUMO

The expression of the gene for a proteinase (Rep1) is upregulated by gibberellins. The CAACTC regulatory element (CARE) of the Rep1 promoter is involved in the gibberellin response. We isolated a cDNA for a CARE-binding protein containing a Myb domain in its carboxyl-terminal region and designated the gene Carboxyl-terminal Myb1 (CTMyb1). This gene encodes two polypeptides of two distinctive lengths, CTMyb1L and CTMyb1S, which include or exclude 213 N-terminal amino acid residues, respectively. CTMyb1S transactivated the Rep1 promoter in the presence of OsGAMyb, but not CTMyb1L. We observed an interaction between CTMyb1S and the rice prolamin box-binding factor (RPBF). A bimolecular fluorescence complex analysis detected the CTMyb1S and RPBF complex in the nucleus, but not the CTMyb1L and RPBF complex. The results suggest that the arrangement of the transfactors is involved in gibberellin-inducible expression of Rep1.


Assuntos
Germinação/genética , Giberelinas/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Plant Cell Physiol ; 55(1): 136-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24265272

RESUMO

Late embryogenesis abundant (LEA) proteins are a family of hyper-hydrophilic proteins that accumulate in response to cellular dehydration. Originally identified as plant proteins associated with seed desiccation tolerance, LEA proteins have been identified in a wide range of organisms such as invertebrates and microorganisms. LEA proteins are thought to protect proteins and biomembranes under water-deficit conditions. Here, we characterized WCI16, a wheat (Triticum aestivum) protein that belongs to a class of plant proteins of unknown function, and provide evidence that WCI16 shares common features with LEA proteins. WCI16 was induced during cold acclimation in winter wheat. Based on its amino acid sequence, WCI16 is highly hydrophilic, like LEA proteins, despite having no significant sequence similarity to any of the known classes of LEA proteins. Recombinant WCI16 protein was soluble after boiling, and (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the structure of WCI16 is random and has no hydrophobic regions. WCI16 exhibited in vitro cryoprotection of the freeze-labile enzyme l-lactate dehydrogenase as well as double-stranded DNA binding activity, suggesting that WCI16 may protect both proteins and DNA during environmental stresses. The biological relevance of these activities was supported by the subcellular localization of a green fluorescent protein (GFP)-fused WCI16 protein in the nucleus and cytoplasm. Heterologous expression of WCI16 in Arabidopsis (Arabidopsis thaliana) plants conferred enhanced freezing tolerance. Taken together, our results indicate that WCI16 represents a novel class of LEA proteins and is involved in freezing tolerance.


Assuntos
Adaptação Fisiológica , Congelamento , Proteínas de Plantas/metabolismo , Triticum/fisiologia , Temperatura Baixa , Citoproteção , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , L-Lactato Desidrogenase/metabolismo , Dados de Sequência Molecular , Ácidos Nucleicos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Análise de Sequência de DNA , Frações Subcelulares/metabolismo , Triticum/genética
14.
Methods Mol Biol ; 2830: 163-171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977577

RESUMO

Dependency on in vitro culture and regeneration limits the ability to use genome editing on elite wheat (Triticum aestivum L.) varieties. We recently developed an in planta particle bombardment (iPB) technique for gene editing in wheat that utilizes shoot apical meristems (SAMs) as a target tissue. Since the method does not require in vitro culture, it can therefore be used on recalcitrant varieties. In this chapter, we describe in detail the steps used in the iPB method. With this protocol, 3% to 5% of T0 plants grown from bombarded SAMs typically carry mutant alleles and approximately 1% to 2% of the T0 plants inherit mutant alleles in the next generation.


Assuntos
Edição de Genes , Dormência de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Edição de Genes/métodos , Dormência de Plantas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Meristema/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sistemas CRISPR-Cas
15.
New Phytol ; 198(1): 95-102, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23323758

RESUMO

Bacterial cold shock proteins (CSPs) act as RNA chaperones that destabilize mRNA secondary structures at low temperatures. Bacterial CSPs are composed solely of a nucleic acid-binding domain termed the cold shock domain (CSD). Plant CSD proteins contain an auxiliary domain in addition to the CSD but also show RNA chaperone activity. However, their biological functions are poorly understood. We examined Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 (AtCSP2) using overexpressing and mutant lines. A double mutant, with reduced AtCSP2 and no AtCSP4, showed higher freezing tolerance than the wild-type when cold-acclimated. The increase in freezing tolerance was associated with up-regulation of CBF transcription factors and their downstream genes. By contrast, overexpression of AtCSP2 resulted in decreased freezing tolerance when cold-acclimated. In addition, late flowering and shorter siliques were observed in the overexpressing lines. AtCSP2 negatively regulates freezing tolerance and is partially redundant with its closest paralog, AtCSP4.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Congelamento , Perfilação da Expressão Gênica , Pleiotropia Genética , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sementes/genética
16.
Biosci Biotechnol Biochem ; 77(5): 934-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23649259

RESUMO

ß-Glucosidases (EC 3.2.1.21) split ß-glucosidic linkages at the non-reducing end of glucosides and oligosaccharides to release ß-D-glucose. One of the important functions of plant ß-glucosidase is deglucosylation of inactive glucosides of phytohormones to regulate levels of active hormones. Tuberonic acid is a jasmonate-related compound that shows tuber-inducing activity in the potato. We have identified two enzymes, OsTAGG1 and OsTAGG2, that have hydrolytic activity towards tuberonic acid ß-D-glucoside in rice (Oryza sativa L.). The expression of OsTAGG2 is upregulated by wounding and by methyl jasmonate, suggesting that this isozyme is involved in responses to biotic stresses and wounding, but the physiological substrate of OsTAGG2 remains ambiguous. In this study, we produced recombinant OsTAGG2 in Pichia pastoris (rOsTAGG2P), and investigated its substrate specificity in detail. From 1 L of culture medium, 2.1 mg of purified recombinant enzyme was obtained by ammonium sulfate precipitation and Ni-chelating column chromatography. The specific activity of rOsTAGG2P (182 U/mg) was close to that of the native enzyme (171 U/mg), unlike recombinant OsTAGG2 produced in Escherichia coli, which had approximately 3-fold lower specific activity than the native enzyme. The optimum pH and temperature for rOsTAGG2P were pH 3.4 and 60 °C. After pH and heat treatments, the enzyme retained its original activity in a pH range of 3.4-9.8 and below 55 °C. Native OsTAGG2 and rOsTAGG2P showed 4.5-4.7-fold higher activities towards salicylic acid ß-D-glucoside, an inactive storage-form of salicylic acid, than towards tuberonic acid ß-D-glucoside (TAG), although OsTAGG2 was originally isolated from rice based on TAG-hydrolytic activity.


Assuntos
Glucosídeos/metabolismo , Oryza/enzimologia , Salicilatos/metabolismo , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Hidrólise , Dados de Sequência Molecular , Pichia/genética , Especificidade por Substrato , Temperatura , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação
17.
Biochem J ; 443(1): 95-102, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22248149

RESUMO

MAPK (mitogen-activated protein kinase) pathways have been implicated in stress signalling in plants. In the present study, we performed yeast two-hybrid screening to identify partner MAPKs for OsMKK (Oryza sativa MAPK kinase) 6, a rice MAPK kinase, and revealed specific interactions of OsMKK6 with OsMPK3 and OsMPK6. OsMPK3 and OsMPK6 each co-immunoprecipitated OsMKK6, and both were directly phosphorylated by OsMKK6 in vitro. An MBP (myelin basic protein) kinase assay of the immunoprecipitation complex indicated that OsMPK3 and OsMPK6 were activated in response to a moderately low temperature (12°C), but not a severely low temperature (4°C) in rice seedlings. A constitutively active form of OsMKK6, OsMKK6DD, showed elevated phosphorylation activity against OsMPK3 and OsMPK6 in vitro. OsMPK3, but not OsMPK6, was constitutively activated in transgenic plants overexpressing OsMKK6DD, indicating that OsMPK3 is an in vivo target of OsMKK6. Enhanced chilling tolerance was observed in the transgenic plants overexpressing OsMKK6DD. Taken together, our data suggest that OsMKK6 and OsMPK3 constitute a moderately low-temperature signalling pathway and regulate cold stress tolerance in rice.


Assuntos
MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/metabolismo , Sistema de Sinalização das MAP Quinases , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Motivos de Aminoácidos , Substituição de Aminoácidos , Clima Frio , Temperatura Baixa , MAP Quinase Quinase 3/química , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 6/química , MAP Quinase Quinase 6/genética , Mutagênese Sítio-Dirigida , Oryza/enzimologia , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica
18.
Biochem Biophys Res Commun ; 409(4): 634-9, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21619871

RESUMO

The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice.


Assuntos
Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Oryza/enzimologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Isoleucina/biossíntese , Oryza/microbiologia , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Transdução de Sinais
19.
Biosci Biotechnol Biochem ; 75(9): 1740-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21897044

RESUMO

Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. In this study, we examined the subcellular localization, tissue-specific gene expression, and enzymatic characteristics of three rice NDPK isozymes (OsNDPK1-OsNDPK3). Sequence comparison of the three OsNDPKs suggested differential subcellular localization. Transient expression of green fluorescence protein-fused proteins in onion cells indicated that OsNDPK2 and OsNDPK3 are localized to plastid and mitochondria respectively, while OsNDPK1 is localized to the cytosol. Expression analysis indicated that all the OsNDPKs are expressed in the leaf, leaf sheath, and immature seeds, except for OsNDPK1, in the leaf sheath. Recombinant OsNDPK2 and OsNDPK3 showed lower optimum pH and higher stability under acidic pH than OsNDPK1. In ATP formation, all the OsNDPKs displayed lower K(m) values for the second substrate, ADP, than for the first substrate, NTP, and showed lowest and highest K(m) values for GTP and CTP respectively.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Cebolas/enzimologia , Oryza/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Difosfato de Adenosina/metabolismo , Clonagem Molecular , Citosol/enzimologia , Estabilidade Enzimática , Escherichia coli , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Cinética , Microscopia de Fluorescência , Mitocôndrias/enzimologia , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/genética , Cebolas/citologia , Cebolas/genética , Oryza/genética , Folhas de Planta/enzimologia , Plasmídeos , Plastídeos/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Sementes/enzimologia , Especificidade por Substrato , Transformação Bacteriana
20.
Plants (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34579409

RESUMO

Salicylic acid (SA) is a phytohormone that regulates a variety of physiological and developmental processes, including disease resistance. SA is a key signaling component in the immune response of many plant species. However, the mechanism underlying SA-mediated immunity is obscure in rice (Oryza sativa). Prior analysis revealed a correlation between basal SA level and blast resistance in a range of rice varieties. This suggested that resistance might be improved by increasing basal SA level. Here, we identified a novel UDP-glucosyltransferase gene, UGT74J1, which is expressed ubiquitously throughout plant development. Mutants of UGT74J1 generated by genome editing accumulated high levels of SA under non-stressed conditions, indicating that UGT74J1 is a key enzyme for SA homeostasis in rice. Microarray analysis revealed that the ugt74j1 mutants constitutively overexpressed a set of pathogenesis-related (PR) genes. An inoculation assay demonstrated that these mutants had increased resistance against rice blast, but they also exhibited stunted growth phenotypes. To our knowledge, this is the first report of a rice mutant displaying SA overaccumulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa