Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 83(4): 622-636.e10, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36657444

RESUMO

Despite extensive studies on the chromatin landscape of exhausted T cells, the transcriptional wiring underlying the heterogeneous functional and dysfunctional states of human tumor-infiltrating lymphocytes (TILs) is incompletely understood. Here, we identify gene-regulatory landscapes in a wide breadth of functional and dysfunctional CD8+ TIL states covering four cancer entities using single-cell chromatin profiling. We map enhancer-promoter interactions in human TILs by integrating single-cell chromatin accessibility with single-cell RNA-seq data from tumor-entity-matching samples and prioritize cell-state-specific genes by super-enhancer analysis. Besides revealing entity-specific chromatin remodeling in exhausted TILs, our analyses identify a common chromatin trajectory to TIL dysfunction and determine key enhancers, transcriptional regulators, and deregulated genes involved in this process. Finally, we validate enhancer regulation at immunotherapeutically relevant loci by targeting non-coding regulatory elements with potent CRISPR activators and repressors. In summary, our study provides a framework for understanding and manipulating cell-state-specific gene-regulatory cues from human tumor-infiltrating lymphocytes.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Neoplasias/genética , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Cromatina/genética , Linfócitos do Interstício Tumoral , Elementos Facilitadores Genéticos
2.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33789089

RESUMO

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Assuntos
Cromatina/imunologia , Linfócitos T Reguladores/imunologia , Cicatrização/imunologia , Adulto , Animais , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Células HaCaT , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores CCR8/imunologia , Células T Auxiliares Foliculares/imunologia
3.
Nat Immunol ; 18(10): 1160-1172, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28783152

RESUMO

Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. We found that epigenetic modifications defined the molecular characteristics of tissue Treg cells. Tagmentation-based whole-genome bisulfite sequencing revealed more than 11,000 regions that were methylated differentially in pairwise comparisons of tissue Treg cell populations and lymphoid T cells. Similarities in the epigenetic landscape led to the identification of a common tissue Treg cell population that was present in many organs and was characterized by gain and loss of DNA methylation that included many gene sites associated with the TH2 subset of helper T cells, such as the gene encoding cytokine IL-33 receptor ST2, as well as the production of tissue-regenerative factors. Furthermore, the ST2-expressing population was dependent on the transcriptional regulator BATF and could be expanded by IL-33. Thus, tissue Treg cells integrate multiple waves of epigenetic reprogramming that define their tissue-restricted specialization.


Assuntos
Metilação de DNA , Estudo de Associação Genômica Ampla , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Análise por Conglomerados , Biologia Computacional/métodos , Ilhas de CpG , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Imunofenotipagem , Camundongos , Camundongos Transgênicos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Regiões Promotoras Genéticas , Células Th2/metabolismo , Sítio de Iniciação de Transcrição , Transcriptoma
5.
Immunity ; 52(2): 295-312.e11, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31924477

RESUMO

Specialized regulatory T (Treg) cells accumulate and perform homeostatic and regenerative functions in nonlymphoid tissues. Whether common precursors for nonlymphoid-tissue Treg cells exist and how they differentiate remain elusive. Using transcription factor nuclear factor, interleukin 3 regulated (Nfil3) reporter mice and single-cell RNA-sequencing (scRNA-seq), we identified two precursor stages of interleukin 33 (IL-33) receptor ST2-expressing nonlymphoid tissue Treg cells, which resided in the spleen and lymph nodes. Global chromatin profiling of nonlymphoid tissue Treg cells and the two precursor stages revealed a stepwise acquisition of chromatin accessibility and reprogramming toward the nonlymphoid-tissue Treg cell phenotype. Mechanistically, we identified and validated the transcription factor Batf as the driver of the molecular tissue program in the precursors. Understanding this tissue development program will help to harness regenerative properties of tissue Treg cells for therapy.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfonodos/imunologia , Baço/imunologia , Linfócitos T Reguladores/citologia , Transferência Adotiva , Animais , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular/genética , Cromatina/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Especificidade de Órgãos/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Linfócitos T Reguladores/metabolismo
6.
EMBO J ; 42(12): e111272, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37143403

RESUMO

Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering its environmental cause, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) across COPD stages. We show that the epigenetic landscape is changed early in COPD, with DNA methylation changes occurring predominantly in regulatory regions. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Data integration identified 110 candidate regulators of disease phenotypes that were linked to fibroblast repair processes using phenotypic screens. Our study provides high-resolution multi-omic maps of HLFs across COPD stages. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic lung diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Epigênese Genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Perfilação da Expressão Gênica , Metilação de DNA
7.
Immunity ; 45(5): 1148-1161, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851915

RESUMO

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Epigênese Genética/imunologia , Epigenômica/métodos , Memória Imunológica/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase , Transcriptoma
8.
Mol Cancer ; 23(1): 93, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720314

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA's full potential, this study introduces a novel approach for CTC enrichment from DLAs. METHODS: DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. RESULTS: Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. CONCLUSIONS: In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Leucaférese , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Fenótipo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Análise de Célula Única/métodos , Transcriptoma , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
9.
Gastroenterology ; 165(4): 891-908.e14, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37263303

RESUMO

BACKGROUND & AIMS: As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach. METHODS: We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation. We determined prognostic associations of immune signatures and performed a meta-analysis of the immune microenvironment in PDAC and lung adenocarcinoma on single-cell level. RESULTS: We provided a spatially resolved fine map of the immune landscape in PDAC. We substantiated the exhausted phenotype of CD8 T cells and immunosuppressive features of myeloid cells, and highlighted immune subsets with potentially underappreciated roles in PDAC that diverged from immune populations within adjacent normal areas, particularly CD4 T cell subsets and natural killer T cells that are terminally exhausted and acquire a regulatory phenotype. Differential analysis of immune phenotypes in PDAC and lung adenocarcinoma revealed the presence of extraordinarily immunosuppressive subtypes in PDAC, along with a distinctive immune checkpoint composition. CONCLUSIONS: Our study sheds light on the multilayered immune dysfunction in PDAC and presents a holistic view of the immune landscape in PDAC and lung adenocarcinoma, providing a comprehensive resource for functional studies and the exploration of therapeutically actionable targets in PDAC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Ductal Pancreático , Doenças do Sistema Imunitário , Neoplasias Pancreáticas , Humanos , Multiômica , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Análise de Célula Única , Microambiente Tumoral , Neoplasias Pancreáticas
10.
Nature ; 547(7663): 311-317, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726821

RESUMO

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Assuntos
Análise Mutacional de DNA , Genoma Humano/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Sequenciamento Completo do Genoma , Carcinogênese/genética , Proteínas de Transporte/genética , Estudos de Coortes , Metilação de DNA , Conjuntos de Dados como Assunto , Epistasia Genética , Genômica , Humanos , Terapia de Alvo Molecular , Proteínas Musculares/genética , Mutação , Oncogenes/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética
11.
J Transl Med ; 19(1): 204, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980253

RESUMO

BACKGROUND: Soft-tissue sarcomas (STS) are a heterogeneous group of mesenchymal tumors for which response to immunotherapies is not well established. Therefore, it is important to risk-stratify and identify STS patients who will most likely benefit from these treatments. RESULTS: To reveal shared and distinct methylation signatures present in STS, we performed unsupervised deconvolution of DNA methylation data from the TCGA sarcoma and an independent validation cohort. We showed that leiomyosarcoma can be subclassified into three distinct methylation groups. More importantly, we identified a component associated with tumor-infiltrating leukocytes, which suggests varying degrees of immune cell infiltration in STS subtypes and an association with prognosis. We further investigated the genomic alterations that may influence tumor infiltration by leukocytes including RB1 loss in undifferentiated pleomorphic sarcomas and ELK3 amplification in dedifferentiated liposarcomas. CONCLUSIONS: In summary, we have leveraged unsupervised methylation-based deconvolution to characterize the immune compartment and molecularly stratify subtypes in STS, which may benefit precision medicine in the future.


Assuntos
Leiomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Epigenoma , Genômica , Humanos , Leiomiossarcoma/genética , Proteínas Proto-Oncogênicas c-ets , Sarcoma/genética
12.
Nature ; 511(7510): 428-34, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043047

RESUMO

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Variação Estrutural do Genoma/genética , Meduloblastoma/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Criança , Cromossomos Humanos Par 9/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Meduloblastoma/classificação , Meduloblastoma/patologia , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
14.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38226976

RESUMO

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Humanos , Receptores ErbB , Tecido Adiposo , Ciclo Celular
15.
Cell Rep ; 42(12): 113266, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979172

RESUMO

Chromosome instability (CIN) contributes to resistance to therapies and tumor evolution. Although natural killer (NK) cells can eliminate cells with complex karyotypes, high-CIN human tumors have an immunosuppressive phenotype. To understand which CIN-associated molecular features alter immune recognition during tumor evolution, we overexpress Polo-like kinase 1 (Plk1) in a Her2+ breast cancer model. These high-CIN tumors activate a senescence-associated secretory phenotype (SASP), upregulate PD-L1 and CD206, and induce non-cell-autonomous nuclear factor κB (NF-κß) signaling, facilitating immune evasion. Single-cell RNA sequencing from pre-neoplastic mammary glands unveiled the presence of Arg1+ macrophages, NK cells with reduced effector functions, and increased resting regulatory T cell infiltration. We further show that high PLK1-expressing human breast tumors display gene expression patterns associated with SASP, NF-κß signaling, and immune suppression. These findings underscore the need to understand the immune landscape in CIN tumors to identify more effective therapies, potentially combining immune checkpoint or NF-κß inhibitors with current treatments.


Assuntos
Neoplasias da Mama , Instabilidade Cromossômica , Tolerância Imunológica , Quinase 1 Polo-Like , Evasão Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Humanos , Animais , Camundongos , Quinase 1 Polo-Like/genética , Quinase 1 Polo-Like/metabolismo , Linhagem Celular Tumoral , Receptor ErbB-2/genética , NF-kappa B/metabolismo , Antígeno B7-H1/metabolismo , Receptor de Manose/metabolismo , Células Matadoras Naturais/imunologia , Xenoenxertos , Células MCF-7 , Feminino
16.
Lung Cancer ; 164: 46-51, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998106

RESUMO

OBJECTIVES: Immune checkpoint inhibitors (ICI) have significantly improved outcome of patients with advanced NSCLC and recently also showed benefit in early-stage disease. Patients with oligometastatic disease (OMD) harbor limited metastases, resectable primary tumors and derive benefit from treatment with multimodal locally ablative and systemic therapy approaches. Nothing is known about feasibility and efficacy of neoadjuvant ICI in this setting. MATERIAL AND METHODS: We here provide data from a multicenter retrospective study comprising 13 patients with NSCLC and OMD (≤3 distant metastases) from 5 university medical centers in Germany who have been treated with neoadjuvant ICI alone (n = 4) or in combination with chemotherapy (CT) (n = 9) prior to resection of the primary tumor. We analyzed complete (pCR) and major pathological remission (MPR) rates. RESULTS: These data show that neoadjuvant immunotherapy applied mostly in combination with CT results in high rates of pCR and MPR (54 and 69%, respectively). Up to now, 85% of patients are free of progression with a median follow-up of 9 months (3-28 months). Single cell RNASeq analysis of tumor tissue from one patient treated with CT-ICI indicates a strong predominance of adaptive immune cell populations over a small minority of epithelial (tumor) cells. CONCLUSION: Neoadjuvant ICI with or without CT is a promising therapeutic concept in patients with OMD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Terapia Neoadjuvante , Estudos Retrospectivos
17.
Oncol Res Treat ; 44(9): 495-502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34320493

RESUMO

INTRODUCTION: The prognosis of pancreatic cancer has improved only modestly in recent years. This is partly due to the lack of development in precision oncology including immune oncology in this entity. Rearrangements of the proto-oncogene tyrosine protein kinase ROS1 gene represent driver alterations found especially in lung cancer. Tyrosine kinase inhibitors (TKI) with activity against ROS1 including lorlatinib substantially improved the outcome of this patient population. Anecdotal evidence reports treatment of pancreatic cancer harboring ROS1 fusions with ROS1 TKI, but data concerning treatment of patients with ROS1 point mutations are lacking. CASE PRESENTATION: This case describes a pancreatic cancer patient harboring a ROS1 point mutation that occurred without an underlying ROS1 rearrangement and thus not in the resistance situation. The heavily pretreated patient showed a strong decrease of the tumor biomarkers (CA19-9 and CEA) and radiologically a durable stable disease to the targeted treatment with lorlatinib, thereby achieving a progression-free survival of 12 months. CONCLUSION: Our data are the first to show a clinical benefit from targeted treatment with ROS1 TKI in a cancer patient with a thus far undescribed ROS1 point mutation without a concomitant ROS1 rearrangement. Furthermore, they indicate that ROS1 could be an oncogenic driver in pancreatic cancer. This subgroup could be eligible for targeted treatments, which may contribute to the urgently needed improvement in patient outcome.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Pancreáticas , Aminopiridinas , Humanos , Lactamas , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisão , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Pirazóis
18.
Hemasphere ; 5(9): e630, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34396051

RESUMO

BCR-ABL negative myeloproliferative neoplasms (MPNs) consist of essential thrombocythemia, polycythemia vera, and myelofibrosis. The majority of patients harbor the JAK2-activating mutation V617F. JAK2 inhibitors were shown to reduce symptom burden and splenomegaly in MPN patients. However, treatment options are limited after failure of JAK2 inhibitors. AXL, a member of the TAM family of receptor tyrosine kinases, mediates survival and therapy resistance of different myeloid cancers including acute myeloid leukemia and chronic myeloid leukemia. We studied the relevance of AXL as a target in MPN using primary patient cells and preclinical disease models. We found that AXL is abundantly activated in MPN cells and that its ligand growth arrest-specific gene 6 is upregulated in MPN patients. Pharmacologic and genetic blockade of AXL impaired viability, decreased proliferation and increased apoptosis of MPN cells. Interestingly, ruxolitinib treatment induced increased phosphorylation of AXL indicating that activation of AXL might mediate resistance to ruxolitinib. Consistently, the AXL inhibitor bemcentinib exerted additive effects with ruxolitinib via impaired STAT3, STAT5, and AKT signaling. Both agents had activity when employed alone and exerted an additive effect on survival and splenomegaly in vivo. Moreover, bemcentinib treatment normalized red blood cell count and hemoglobin levels in vivo. Thus, our data indicate that AXL inhibition represents a novel treatment option in MPN warranting clinical investigation.

19.
Cancer Discov ; 11(3): 638-659, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060108

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Metilação de DNA , Interferons/metabolismo , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Sequências Repetitivas de Ácido Nucleico , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ilhas de CpG , Progressão da Doença , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Reprodutibilidade dos Testes , Transdução de Sinais , Transcriptoma , Microambiente Tumoral/genética
20.
iScience ; 23(5): 101127, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32422593

RESUMO

Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood. Here, we generated double-stranded DNA probes complementary to the Foxp3 promoter sequence and performed a pull-down with nuclear protein in vitro, followed by elution of bound proteins and quantitative mass spectrometry. Of the Foxp3-promoter-binding transcription factors identified with this approach, one was T cell factor 1 (TCF1). Using viral over-expression, we identified TCF1 as a repressor of Foxp3 expression. In TCF1-deficient animals, increased levels of Foxp3intermediateCD25negative T cells were identified. CRISPR-Cas9 knockout studies in primary human and mouse conventional CD4 T (Tconv) cells revealed that TCF1 protects Tconv cells from inadvertent Foxp3 expression. Our data implicate a role of TCF1 in suppressing Foxp3 expression in activated T cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa