Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(13)2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32541014

RESUMO

The gap junction protein Connexin 43 (Cx43) contributes to cell fate decisions that determine the location of fin ray joints during regeneration. Here, we provide insights into how Cx43, expressed medially, influences changes in gene expression in lateral skeletal precursor cells. Using the Gap27 peptide inhibitor specific to Cx43, we show that Cx43-gap junctional intercellular communication (GJIC) influences Cx43-dependent skeletal phenotypes, including segment length. We also demonstrate that Cx43-GJIC influences the expression of the Smp/ß-catenin pathway in the lateral skeletal precursor cells, and does not influence the Sema3d pathway. Moreover, we show that the cx43lh10 allele, which has increased Cx43 protein levels, exhibits increased regenerate length and segment length. These phenotypes are rescued by Gap27, suggesting that increased Cx43 is responsible for the observed Cx43 phenotypes. Finally, our findings suggest that inhibition of Cx43 hemichannel activity does not influence Cx43-dependent skeletal phenotypes. These data provide evidence that Cx43-GJIC is responsible for regulating cell fate decisions associated with appropriate joint formation in the regenerating fin.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Nadadeiras de Animais/metabolismo , Animais , Comunicação Celular/fisiologia , Conexinas/metabolismo , Oligopeptídeos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
2.
Development ; 145(23)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377172

RESUMO

The correct positioning of joints in the vertebrate skeleton is not well understood. Mutations in connexin43 (cx43) cause the short segment phenotype of the zebrafish short fin (sofb123 ) mutant. We have shown that Cx43 suppresses evx1 expression, a transcription factor required for joint formation. Here, we provide novel insights into how Cx43 influences evx1 transcription. First, we find that Simplet (Smp) knockdown recapitulates the sofb123 phenotypes of reduced regenerate length and reduced segment length, and we find evidence for synergy between cx43 and smp Moreover, knockdown of Smp increases the evx1 expression, similar to cx43 knockdown. Previous studies have shown that Smp is required for the nuclear localization of ß-catenin. Indeed, ß-catenin activity is required for segment length, and is reduced in both sofb123 mutants and following Smp knockdown in regenerating fins. We further show that blocking canonical Wnt signaling results in a synergistic reduction in segment length in sofb123/+ heterozygotes. Together, our findings suggest that both Smp and ß-catenin function in a common molecular pathway with cx43 to influence both evx1 expression and joint location.


Assuntos
Padronização Corporal , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Conexina 43/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Nadadeiras de Animais/fisiologia , Animais , Técnicas de Silenciamento de Genes , Articulações/metabolismo , Modelos Biológicos , Fenótipo , Regeneração , Proteínas Wnt/genética , Proteínas de Peixe-Zebra/genética
3.
Dev Dyn ; 246(11): 881-888, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28422453

RESUMO

Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Doenças do Sistema Nervoso/genética , Transcrição Gênica , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais , Síndrome de Cornélia de Lange , Ectromelia , Estudos de Associação Genética , Humanos , Hipertelorismo , Doenças do Sistema Nervoso/patologia , Peixe-Zebra , Coesinas
4.
Dev Dyn ; 246(9): 691-699, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28577298

RESUMO

BACKGROUND: How joints are correctly positioned in the vertebrate skeleton remains poorly understood. From our studies on the regenerating fin, we have evidence that the gap junction protein Cx43 suppresses joint formation by suppressing the expression of the evx1 transcription factor. Joint morphogenesis proceeds through at least two discrete stages. First, cells that will produce the joint condense in a single row on the bone matrix ("initiation"). Second, these cells separate coincident with articulation of the bone matrix. We propose that Cx43 activity is transiently reduced prior to joint initiation. RESULTS: We first define the timing of joint initiation with respect to regeneration. We next correlate reduced cx43 expression and increased evx1 expression with initiation. Through manipulation of cx43 expression, we demonstrate that Cx43 negatively influences evx1 expression and joint formation. We further demonstrate that Cx43 activity in the dermal fibroblasts is required to rescue joint formation in the cx43 mutant, short finb123 . CONCLUSIONS: We conclude that Cx43 activity in the dermal fibroblasts influences the expression of evx1, and therefore the differentiation of the precursor cells that give rise to the joint-forming osteoblasts. Developmental Dynamics 246:691-699, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Conexina 43/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Animais , Conexina 43/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Hibridização In Situ , Morfogênese/genética , Morfogênese/fisiologia , Tacrolimo/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
J Prev Med Hyg ; 59(1): E99-E107, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29938245

RESUMO

Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV). JEV is transmitted by mosquitoes to a wide range of vertebrate hosts, including birds and mammals. Domestic animals, especially pigs, are generally implicated as reservoirs of the virus, while humans are not part of the natural transmission cycle and cannot pass the virus to other hosts. Although JEV infection is very common in endemic areas (many countries in Asia), less than 1% of people affected develop clinical disease, and severe disease affects about 1 case per 250 JEV infections. Although rare, severe disease can be devastating; among the 30,000-50,000 global cases per year, approximately 20-30% of patients die and 30-50% of survivors develop significant neurological sequelae. JE is a significant public health problem for residents in endemic areas and may constitute a substantial risk for travelers to these areas. The epidemiology of JE and its risk to travelers have changed, and continue to evolve. The rapid economic growth of Asian countries has led to a surge in both inbound and outbound travel, making Asia the second most-visited region in the world after Europe, with 279 million international travelers in 2015. The top destination is China, followed by Thailand, Hong Kong, Malaysia and Japan, and the number of travelers is forecast to reach 535 million by 2030 (+ 4.9% per year). Because of the lack of treatment and the infeasibility of eliminating the vector, vaccination is recognized as the most efficacious means of preventing JE. The IC51 vaccine (IXIARO®) is a purified, inactivated, whole virus vaccine against JE. It is safe, well tolerated, efficacious and can be administered to children, adults and the elderly. The vaccination schedule involves administering 2 doses four weeks apart. For adults, a rapid schedule (0-7 days) is available, which could greatly enhance the feasibility of its use. Healthcare workers should inform both short- and long-term travelers of the risk of JE in each period of the year and recommend vaccination. Indeed, it has been shown that short-term travelers are also at risk, not only in rural environments, but also in cities and coastal towns, especially in tourist localities where excursions to country areas are organized.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Encefalite Japonesa/prevenção & controle , Vacinas contra Encefalite Japonesa/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ásia , Ensaios Clínicos Fase III como Assunto , Descoberta de Drogas , Humanos , Vacinas contra Encefalite Japonesa/efeitos adversos , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Medicina de Viagem , Adulto Jovem
6.
J Biol Chem ; 291(24): 12601-12611, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27129238

RESUMO

Fish remain nearly the same shape as they grow, but there are two different modes of bone growth. Bones in the tail fin (fin ray segments) are added distally at the tips of the fins and do not elongate once produced. On the other hand, vertebrae enlarge in proportion to body growth. To elucidate how bone growth is controlled, we investigated a zebrafish mutant, steopsel (stp(tl28d)). Vertebrae of stp(tl28d) (/+) fish look normal in larvae (∼30 days) but are distinctly shorter (59-81%) than vertebrae of wild type fish in adults. In contrast, the lengths of fin rays are only slightly shorter (∼95%) than those of the wild type in both larvae and adults. Positional cloning revealed that stp encodes Connexin43 (Cx43), a connexin that functions as a gap junction and hemichannel. Interestingly, cx43 was also identified as the gene causing the short-of-fin (sof) phenotype, in which the fin ray segments are shorter but the vertebrae are normal. To identify the cause of this difference between the alleles, we expressed Cx43 exogenously in Xenopus oocytes and performed electrophysiological analysis of the mutant proteins. Gap junction coupling induced by Cx43(stp) or Cx43(sof) was reduced compared with Cx43-WT. On the other hand, only Cx43(stp) induced abnormally high (50× wild type) transmembrane currents through hemichannels. Our results suggest that Cx43 plays critical and diverse roles in zebrafish bone growth.


Assuntos
Desenvolvimento Ósseo/genética , Conexina 43/genética , Mutação , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Nadadeiras de Animais/crescimento & desenvolvimento , Nadadeiras de Animais/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Conexina 43/fisiologia , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Microscopia de Fluorescência , Oócitos/metabolismo , Oócitos/fisiologia , Osteogênese/genética , Técnicas de Patch-Clamp , Fenótipo , Xenopus laevis , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/fisiologia
7.
Dev Dyn ; 245(1): 7-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26434741

RESUMO

BACKGROUND: Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related developmental malady termed Cornelia de Lange syndrome (CdLS). RBS and CdLS exhibit overlapping phenotypes, but RBS is thought to arise through mitotic failure and limited progenitor cell proliferation while CdLS arises through transcriptional dysregulation. Here, we use the zebrafish regenerating fin model to test the mechanism through which RBS-type phenotypes arise. RESULTS: esco2 is up-regulated during fin regeneration and specifically within the blastema. esco2 knockdown adversely affects both tissue and bone growth in regenerating fins-consistent with a role in skeletal morphogenesis. esco2-knockdown significantly diminishes cx43/gja1 expression which encodes the gap junction connexin subunit required for cell-cell communication. cx43 mutations cause the short fin (sof(b123) ) phenotype in zebrafish and oculodentodigital dysplasia (ODDD) in humans. Importantly, miR-133-dependent cx43 overexpression rescues esco2-dependent growth defects. CONCLUSIONS: These results conceptually link ODDD to cohesinopathies and provide evidence that ESCO2 may play a transcriptional role critical for human development.


Assuntos
Acetiltransferases/genética , Nadadeiras de Animais/fisiologia , Osso e Ossos/fisiologia , Conexina 43/genética , Regeneração/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Acetiltransferases/metabolismo , Animais , Apoptose/genética , Proliferação de Células/genética , Conexina 43/metabolismo , Regulação da Expressão Gênica , Regulação para Cima , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Biochemistry ; 55(35): 4928-38, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27508400

RESUMO

Plexins are transmembrane proteins that serve as guidance receptors during angiogenesis, lymphangiogenesis, neuronal development, and zebrafish fin regeneration, with a putative role in cancer metastasis. Receptor dimerization or clustering, induced by extracellular ligand binding but modulated in part by the plexin transmembrane (TM) and juxtamembrane (JM) domains, is thought to drive plexin activity. Previous studies indicate that isolated plexin TM domains interact through a conserved, small-x3-small packing motif, and the cytosolic JM region interacts through a hydrophobic heptad repeat; however, the roles and interplay of these regions in plexin signal transduction remain unclear. Using an integrated experimental and simulation approach, we find disruption of the small-x3-small motifs in the Danio rerio Plexin A3 TM domain enhances dimerization of the TM-JM domain by enhancing JM-mediated dimerization. Furthermore, mutations of the cytosolic JM heptad repeat that disrupt dimerization do so even in the presence of TM domain mutations. However, mutations to the small-x3-small TM interfaces also disrupt Plexin A3 signaling in a zebrafish axonal guidance assay, indicating the importance of this TM interface in signal transduction. Collectively, our experimental and simulation results demonstrate that multiple TM and JM interfaces exist in the Plexin A3 homodimer, and these interfaces independently regulate dimerization that is important in Plexin A3 signal transduction.


Assuntos
Proteínas de Membrana/química , Receptores de Superfície Celular/química , Transdução de Sinais , Proteínas de Peixe-Zebra/química , Animais , Dimerização , Simulação de Dinâmica Molecular , Peixe-Zebra/embriologia
9.
Biopolymers ; 104(4): 371-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25656526

RESUMO

Neuropilins (NRPs) are transmembrane receptors involved in angiogenesis, lymphangiogenesis, and neuronal development as well as in cancer metastasis. Previous studies suggest that NRPs exist in heteromeric complexes with vascular endothelial growth factors (VEGFs) and VEGF receptors as well as plexins and semaphorins. We determined via site-directed mutagenesis and bioluminescent resonance energy transfer assays that a conserved cysteine (C711) in the Danio rerio NRP2a MAM (meprin, A-5 protein, and protein tyrosine phosphatase µ) domain modulates NRP2a homomeric interactions. Mutation of this residue also disrupts semaphorin-3F binding in NRP2a-transfected COS-7 cells and prevents the NRP2a overexpression effects in a zebrafish vascular model. Collectively, our results indicate the MAM domain plays an important role in defining the NRP2 homodimer structure, which is important for semaphorin-dependent signal transduction via NRP2.


Assuntos
Neuropilina-2/metabolismo , Multimerização Proteica/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cisteína/genética , Cisteína/metabolismo , Neuropilina-2/genética , Estrutura Terciária de Proteína , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Front Cardiovasc Med ; 11: 1232269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322766

RESUMO

Background: Immune checkpoint blockade in monotherapy or combinatorial regimens with chemotherapy or radiotherapy have become an integral part of oncology in recent years. Monoclonal antibodies against CTLA-4 or PD-1 or PDL-1 are the most studied ICIs in randomized clinical trials, however, more recently, an anti-LAG3 (Lymphocyte activation gene-3) antibody, Relatlimab, has been approved by FDA in combination with Nivolumab for metastatic melanoma therapy. Moreover, Atezolizumab is actually under study in association with Ipilimumab for therapy of metastatic lung cancer. Myocarditis, vasculitis and endothelitis are rarely observed in these patients on monotherapy, however new combination therapies could expose patients to more adverse cardiovascular events. Methods: Human cardiomyocytes co-cultured with human peripheral blood lymphocytes (hPBMCs) were exposed to monotherapy and combinatorial ICIs (PD-L1 and CTLA-4 or PD-1 and LAG-3 blocking agents, at 100 nM) for 48 h. After treatments, cardiac cell lysis and secretion of biomarkers of cardiotoxicity (H-FABP, troponin-T, BNP, NT-Pro-BNP), NLRP3-inflammasome and Interleukin 1 and 6 were determined through colorimetric and enzymatic assays. Mitochondrial functions were studied in cardiomyocyte cell lysates through quantification of intracellular Ca++, ATP content and NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) levels. Histone deacetylases type 4 (HDAC-4) protein levels were also determined in cardiomyocyte cell lysates to study potential epigenetic changes induced by immunotherapy regimens. Results: Both combinations of immune checkpoint inhibitors exert more potent cardiotoxic side effects compared to monotherapies against human cardiac cells co-cultured with human lymphocytes. LDH release from cardiac cells was 43% higher in PD-L1/CTLA-4 blocking agents, and 35.7% higher in PD-1/LAG-3 blocking agents compared to monotherapies. HDAC4 and intracellular Ca++ levels were increased, instead ATP content and Ndufs1 were reduced in myocardial cell lysates (p < 0.001 vs. untreated cells). Troponin-T, BNP, NT-Pro-BNP and H-FABP, were also strongly increased in combination therapy compared to monotherapy regimen. NLRP3 expression, IL-6 and IL-1ß levels were also increased by PDL-1/CTLA-4 and PD-1/LAG-3 combined blocking agents compared to untreated cells and monotherapies. Conclusions: Data of the present study, although in vitro, indicate that combinatorial immune checkpoint blockade, induce a pro- inflammatory phenotype, thus indicating that these therapies should be closely monitored by the multidisciplinary team consisting of oncologists, cardiologists and immunologists.

11.
Front Cardiovasc Med ; 11: 1289663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818214

RESUMO

Background: Anthracycline-mediated adverse cardiovascular events are among the leading causes of morbidity and mortality in patients with cancer. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) exert multiple cardiometabolic benefits in patients with/without type 2 diabetes, chronic kidney disease, and heart failure with reduced and preserved ejection fraction. We hypothesized that the SGLT2i dapagliflozin administered before and during doxorubicin (DOXO) therapy could prevent cardiac dysfunction and reduce pro-inflammatory pathways in preclinical models. Methods: Cardiomyocytes were exposed to DOXO alone or combined with dapagliflozin (DAPA) at 10 and 100 nM for 24 h; cell viability, iATP, and Ca++ were quantified; lipid peroxidation products (malondialdehyde and 4-hydroxy 2-hexenal), NLRP3, MyD88, and cytokines were also analyzed through selective colorimetric and enzyme-linked immunosorbent assay (ELISA) methods. Female C57Bl/6 mice were treated for 10 days with a saline solution or DOXO (2.17 mg/kg), DAPA (10 mg/kg), or DOXO combined with DAPA. Systemic levels of ferroptosis-related biomarkers, galectin-3, high-sensitivity C-reactive protein (hs-CRP), and pro-inflammatory chemokines (IL-1α, IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IL-18, IFN-γ, TNF-α, G-CSF, and GM-CSF) were quantified. After treatments, immunohistochemical staining of myocardial and renal p65/NF-kB was performed. Results: DAPA exerts cytoprotective, antioxidant, and anti-inflammatory properties in human cardiomyocytes exposed to DOXO by reducing iATP and iCa++ levels, lipid peroxidation, NLRP-3, and MyD88 expression. Pro-inflammatory intracellular cytokines were also reduced. In preclinical models, DAPA prevented the reduction of radial and longitudinal strain and ejection fraction after 10 days of treatment with DOXO. A reduced myocardial expression of NLRP-3 and MyD-88 was seen in the DOXO-DAPA group compared to DOXO mice. Systemic levels of IL-1ß, IL-6, TNF-α, G-CSF, and GM-CSF were significantly reduced after treatment with DAPA. Serum levels of galectine-3 and hs-CRP were strongly enhanced in the DOXO group; on the other hand, their expression was reduced in the DAPA-DOXO group. Troponin-T, B-type natriuretic peptide (BNP), and N-Terminal Pro-BNP (NT-pro-BNP) were strongly reduced in the DOXO-DAPA group, revealing cardioprotective properties of SGLT2i. Mice treated with DOXO and DAPA exhibited reduced myocardial and renal NF-kB expression. Conclusion: The overall picture of the study encourages the use of DAPA in the primary prevention of cardiomyopathies induced by anthracyclines in patients with cancer.

12.
Genesis ; 51(2): 75-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23019186

RESUMO

Gap junction channels mediate direct cell-cell communication via the exchange of second messengers, ions, and metabolites from one cell to another. Mutations in several human connexin (cx) genes, the subunits of gap junction channels, disturb the development and function of multiple tissues/organs. In particular, appropriate function of Cx43 is required for skeletal development in all vertebrate model organisms. Importantly, it remains largely unclear how disruption of gap junctional intercellular communication causes developmental defects. Two groups have taken distinct approaches toward defining the tangible molecular changes occurring downstream of Cx43-based gap junctional communication. Here, these strategies for determining how Cx43 modulates downstream events relevant to skeletal morphogenesis were reviewed.


Assuntos
Desenvolvimento Ósseo , Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Animais , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Comunicação Celular , Linhagem Celular , Humanos , Mutação , Osteoblastos/fisiologia , Vertebrados
13.
Dev Biol ; 366(2): 195-203, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542598

RESUMO

Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous findings from our lab demonstrate that Cx43 is required for both cell proliferation and joint formation during fin regeneration. Here we demonstrate that semaphorin3d (sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that have been implicated in diverse cellular functions such as axon guidance, cell migration, cell proliferation, and gene expression. We suggest that Sema3d mediates the Cx43-dependent functions on cell proliferation and joint formation. Using both in situ hybridization and quantitative RT-PCR, we validated that sema3d expression depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all of the sof(b123) and cx43-knockdown phenotypes, providing functional evidence that Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin overgrowth and increased cell proliferation, but did not influence joint formation. Moreover, morpholino-mediated knockdown of plxna3 caused short segments, influencing joint formation, but did not alter cell proliferation. Together, our findings reveal that Sema3d functions in a common molecular pathway with Cx43. Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-dependent cell proliferation and joint formation utilize independent membrane-bound receptors to mediate downstream cellular phenotypes.


Assuntos
Nadadeiras de Animais/fisiologia , Proteínas de Membrana/fisiologia , Fatores de Crescimento Neural/fisiologia , Semaforinas/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Movimento Celular , Proliferação de Células , Junções Comunicantes , Técnicas de Silenciamento de Genes , Regeneração
14.
Bioelectricity ; 5(3): 173-180, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746310

RESUMO

Background: The regenerating zebrafish fin skeleton is comprised of multiple bony fin rays, each made of alternating bony segments and fin ray joints. This pattern is regulated by the gap junction protein Connexin43 (Cx43), which provides instructional cues to skeletal precursor cells (SPCs). Elevated Cx43 favors osteoblast differentiation and disfavors joint forming cell differentiation. The goal of this article is to test if retinoic acid (RA) contributes to the regulation of cx43 expression. Materials and Methods: Functional studies inhibiting the RA-synthesizing enzyme Adh1a2 were evaluated using in situ hybridization to monitor gene expression and with measurements of the length of fin ray segments to monitor impacts on SPC differentiation and joint formation. Results: Aldh1a2-knockdown leads to reduced expression of cx43 and increased expression of evx1, a gene required for joint formation. Additionally, inhibition of Aldh1a2 function leads to short fin ray segments. We also find evidence for synergy between aldh1a2 and cx43, suggesting that these genes function in a common molecular pathway to regulate joint formation. Conclusions: The role of RA is to promote cx43 expression in the regenerating fin to regulate joint formation and the length of bony fin ray segments. We suggest that RA signaling must coordinate with additional pathways that also regulate cx43 transcription.

15.
Mol Biol Cell ; 34(5): rs2, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947206

RESUMO

Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mutação , Coração , Coesinas
16.
Cell Cycle ; 21(5): 501-513, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989322

RESUMO

Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) are severe developmental maladies that arise from mutation of cohesin (including SMC3, CdLS) and ESCO2 (RBS). Though ESCO2 activates cohesin, CdLS and RBS etiologies are currently considered non-synonymous and for which pharmacological treatments are unavailable. Here, we identify a unifying mechanism that integrates these genetic maladies to pharmacologically-induced teratogenicity via thalidomide. Our results reveal that Esco2 and cohesin co-regulate the transcription of a component of CRL4 ubiquitin ligase through which thalidomide exerts teratogenic effects. These findings are the first to link RBS and CdLS to thalidomide teratogenicity and offer new insights into treatments.


Assuntos
Síndrome de Cornélia de Lange , Talidomida , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais , Proteínas de Ligação a DNA/genética , Síndrome de Cornélia de Lange/genética , Ectromelia , Humanos , Hipertelorismo , Ligases/genética , Mutação , Receptores de Interleucina-17 , Talidomida/efeitos adversos , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Coesinas
17.
Front Physiol ; 13: 845407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117693

RESUMO

Angiogenesis, the outgrowth of new blood vessels from existing vasculature, is critical during development, tissue formation, and wound healing. In response to vascular endothelial growth factors (VEGFs), endothelial cells are activated to proliferate and move towards the signal, extending the vessel. These events are directed by VEGF-VEGF receptor (Vegfr2) signal transduction, which in turn is modulated by heparan sulfate proteoglycans (HSPGs). HSPGs are glycoproteins covalently attached to HS glycosaminoglycan chains. Transmembrane protein 184a (Tmem184a) has been recently identified as a heparin receptor, which is believed to bind heparan sulfate chains in vivo. Therefore, Tmem184a has the potential to fine-tune interactions between VEGF and HS, modulating Vegfr2-dependent angiogenesis. The function of Tmem184a has been investigated in the regenerating zebrafish caudal fin, but its role has yet to be evaluated during developmental angiogenesis. Here we provide insights into how Tmem184a contributes to the proper formation of the vasculature in zebrafish embryos. First, we find that knockdown of Tmem184a causes a reduction in the number of intact intersegmental vessels (ISVs) in the zebrafish embryo. This phenotype mimics that of vegfr2b knockout mutants, which have previously been shown to exhibit severe defects in ISV development. We then test the importance of HS interactions by removing the binding domain within the Tmem184a protein, which has a negative effect on angiogenesis. Tmem184a is found to act synergistically with Vegfr2b, indicating that the two gene products function in a common pathway to modulate angiogenesis. Moreover, we find that knockdown of Tmem184a leads to an increase in endothelial cell proliferation but a decrease in the amount of VE-cadherin present. Together, these findings suggest that Tmem184a is necessary for ISVs to organize into mature, complete vessels.

18.
Eur Rev Med Pharmacol Sci ; 25(21): 6797-6812, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34787884

RESUMO

Cytokines in cardiac tissue plays a key role in progression of cardiometabolic diseases and cardiotoxicity induced by several anticancer drugs. Interleukin-1ß is one on the most studied regulator of cancer progression, survival and resistance to anticancer treatments. Recent findings indicate that interleukin1-ß exacerbates myocardial damages in cancer patients treated with chemotherapies and immune check-point inhibitors. Interleukin1-ß blocking agent canakinumab reduces major adverse cardiovascular events and cardiovascular death in recent cardiovascular trials. We focalized on the main biological functions of interleukin1-ß in cancer and cardiovascular diseases, summarizing the main clinical evidence available to date in literature. Especially in the era of SARS-CoV-2 infection, associated to coagulopathies, myocarditis and heart failure, cancer patients have an increased risk of cardiovascular complications compared to general population, therefore, the pharmacological inhibition of interleukin1-ß should be discussed and considered.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/efeitos adversos , COVID-19/complicações , Cardiotoxicidade/prevenção & controle , Interleucina-1beta/metabolismo , Neoplasias/tratamento farmacológico , Antraciclinas/efeitos adversos , Antraciclinas/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos/uso terapêutico , COVID-19/virologia , Cardiotoxicidade/etiologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Interleucina-1beta/imunologia , Neoplasias/complicações , SARS-CoV-2/isolamento & purificação
19.
Mol Biol Cell ; 32(20): ar13, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379446

RESUMO

Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of Cxs of only 1-5 h, resulting in constant endocytosis and biosynthetic replacement of gap junction channels, has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256-289), a region known to encode key residues regulating gap junction turnover, is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication. Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques, and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that continuous Cx43 gap junction endocytosis is an essential aspect of gap junction function and, when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Comunicação Celular , Linhagem Celular , Células Cultivadas , Conexinas/metabolismo , Endocitose/fisiologia , Junções Comunicantes/metabolismo , Proteínas de Membrana/genética , Fosforilação , Domínios Proteicos , Transporte Proteico , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
Eur Rev Med Pharmacol Sci ; 25(10): 3898-3907, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34109598

RESUMO

The World Cancer Research Fund and American Institute for Cancer Research (WCRF/AICR) advise cancer survivors to follow their lifestyle recommendations for cancer prevention.  Recent research indicates that a proper diet could exerts beneficial metabolic and immune effects in humans through the involvement of several, not yet properly known, metabolic pathways. Here, we argue that following WCRF/AICR recommendations could be a strategy to prevent cardiovascular outcomes [fulminant myocarditis, heart failure, venous thromboembolism (VTE)] and acute respiratory distress syndrome (ARDS) in patients during follow-up post COVID-19 infection. We discuss the metabolic effects of a WCRF/AICR based diet, highlighting on the involved cardio-metabolic pathways related on NLRP3 inflammasome-cytokines axis aimed to improve prognosis of COVID-19, especially in patients with cancer.


Assuntos
COVID-19/patologia , Dieta , Neoplasias/patologia , Consumo de Bebidas Alcoólicas , Peso Corporal , COVID-19/complicações , COVID-19/virologia , Bebidas Gaseificadas , Citocinas/metabolismo , Guias como Assunto , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/complicações , Prognóstico , Carne Vermelha , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Sobreviventes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa