RESUMO
DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to â¼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.
Assuntos
Cromossomos Humanos Par 17 , Mutação , Anormalidades Múltiplas/genética , Pontos de Quebra do Cromossomo , Transtornos Cromossômicos/genética , Duplicação Cromossômica/genética , Variações do Número de Cópias de DNA , Reparo do DNA/genética , Replicação do DNA , Rearranjo Gênico , Genoma Humano , Variação Estrutural do Genoma , Humanos , Mutação INDEL , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA/métodos , Síndrome de Smith-Magenis/genéticaRESUMO
Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases1,2. Previous studies have defined the enzymes that are required for BIR1-5; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Saccharomyces cerevisiae , Cromossomos Fúngicos/genética , DNA Helicases/deficiência , DNA Primase/metabolismo , DNA Fúngico/biossíntese , DNA Polimerase Dirigida por DNA/deficiência , Instabilidade Genômica , Cinética , Mutagênese , Mutação , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Telômero/genética , Fatores de Tempo , Transcrição GênicaRESUMO
Rad52 is a key factor for homologous recombination (HR) in yeast. Rad52 helps assemble Rad51-ssDNA nucleoprotein filaments that catalyze DNA strand exchange, and it mediates single-strand DNA annealing. We find that Rad52 has an even earlier function in HR in restricting DNA double-stranded break ends resection that generates 3' single-stranded DNA (ssDNA) tails. In fission yeast, Exo1 is the primary resection nuclease, with the helicase Rqh1 playing a minor role. We demonstrate that the choice of two extensive resection pathways is regulated by Rad52. In rad52 cells, the resection rate increases from â¼3-5 kb/h up to â¼10-20 kb/h in an Rqh1-dependent manner, while Exo1 becomes dispensable. Budding yeast Rad52 similarly inhibits Sgs1-dependent resection. Single-molecule analysis with purified budding yeast proteins shows that Rad52 competes with Sgs1 for DNA end binding and inhibits Sgs1 translocation along DNA. These results identify a role for Rad52 in limiting ssDNA generated by end resection.
Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Cinética , Mutação , Domínios Proteicos , Transporte Proteico , Proteína Rad52 de Recombinação e Reparo de DNA/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genéticaRESUMO
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.
Assuntos
Reparo do DNA/fisiologia , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , HumanosRESUMO
DNA double-strand break repair by homologous recombination entails nucleolytic resection of the 5' strand at break ends. Dna2, a flap endonuclease with 5'-3' helicase activity, is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispensable for DNA end resection. Unexpectedly, we found a requirement for the helicase function of Dna2 in end resection in budding yeast cells lacking exonuclease 1. Biochemical analysis reveals that ATP hydrolysis-fueled translocation of Dna2 on ssDNA facilitates 5' flap cleavage near a single-strand-double strand junction while attenuating 3' flap incision. Accordingly, the ATP hydrolysis-defective dna2-K1080E mutant is less able to generate long products in a reconstituted resection system. Our study thus reveals a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5' strand specificity of end resection.
Assuntos
DNA Helicases/metabolismo , Reparo do DNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Região 5'-Flanqueadora/genética , Trifosfato de Adenosina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , DNA Helicases/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Insertions of mobile elements1-4, mitochondrial DNA5 and fragments of nuclear chromosomes6 at DNA double-strand breaks (DSBs) threaten genome integrity and are common in cancer7-9. Insertions of chromosome fragments at V(D)J recombination loci can stimulate antibody diversification10. The origin of insertions of chromosomal fragments and the mechanisms that prevent such insertions remain unknown. Here we reveal a yeast mutant, lacking evolutionarily conserved Dna2 nuclease, that shows frequent insertions of sequences between approximately 0.1 and 1.5 kb in length into DSBs, with many insertions involving multiple joined DNA fragments. Sequencing of around 500 DNA inserts reveals that they originate from Ty retrotransposons (8%), ribosomal DNA (rDNA) (15%) and from throughout the genome, with preference for fragile regions such as origins of replication, R-loops, centromeres, telomeres or replication fork barriers. Inserted fragments are not lost from their original loci and therefore represent duplications. These duplications depend on nonhomologous end-joining (NHEJ) and Pol4. We propose a model in which alternative processing of DNA structures arising in Dna2-deficient cells can result in the release of DNA fragments and their capture at DSBs. Similar DNA insertions at DSBs are expected to occur in any cells with linear extrachromosomal DNA fragments.
Assuntos
Quebra Cromossômica , Duplicação Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , DNA Helicases/deficiência , Mutagênese Insercional/genética , Saccharomyces cerevisiae/genética , Centrômero/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase beta/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , Origem de Replicação/genética , Retroelementos/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genéticaRESUMO
Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or break-induced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.
Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/metabolismo , Conversão Gênica , Deleção de Genes , Duplicação Gênica , Humanos , Modelos Biológicos , Ligação Proteica , Rad51 Recombinase/metabolismoRESUMO
We identified Mte1 (Mph1-associated telomere maintenance protein 1) as a multifunctional regulator of Saccharomyces cerevisiae Mph1, a member of the FANCM family of DNA motor proteins important for DNA replication fork repair and crossover suppression during homologous recombination. We show that Mte1 interacts with Mph1 and DNA species that resemble a DNA replication fork and the D loop formed during recombination. Biochemically, Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Consistent with this activity, genetic analysis reveals that Mte1 functions with Mph1 and the associated MHF complex in replication fork repair. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1-MHF and exerts a procrossover role in mitotic recombination. We further show that the influence of Mte1 on Mph1 activities requires its binding to Mph1 and DNA. Thus, Mte1 differentially regulates Mph1 activities to achieve distinct outcomes in recombination and replication fork repair.
Assuntos
RNA Helicases DEAD-box/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , RNA Helicases DEAD-box/genética , Reparo do DNA/genética , Epistasia Genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Mitose , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , DNA Helicases/genética , Endodesoxirribonucleases/metabolismo , Conversão Gênica , Estrutura Terciária de Proteína , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Complex genomic rearrangements (CGRs) are a hallmark of many human diseases. Recently, CGRs were suggested to result from microhomology-mediated break-induced replication (MMBIR), a replicative mechanism involving template switching at positions of microhomology. Currently, the cause of MMBIR and the proteins mediating this process remain unknown. Here, we demonstrate in yeast that a collapse of homology-driven break-induced replication (BIR) caused by defective repair DNA synthesis in the absence of Pif1 helicase leads to template switches involving 0-6 nt of homology, followed by resolution of recombination intermediates into chromosomal rearrangements. Importantly, we show that these microhomology-mediated template switches, indicative of MMBIR, are driven by translesion synthesis (TLS) polymerases Polζ and Rev1. Thus, an interruption of BIR involving fully homologous chromosomes in yeast triggers a switch to MMBIR catalyzed by TLS polymerases. Overall, our study provides important mechanistic insights into the initiation of MMBIR associated with genomic rearrangements, similar to those promoting diseases in humans.
Assuntos
Aberrações Cromossômicas , Quebras de DNA de Cadeia Simples , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos , DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Genes Fúngicos , Humanos , Saccharomyces cerevisiae/enzimologia , Homologia de SequênciaRESUMO
The Rad51/RecA family of recombinases perform a critical function in typical repair of double-strand breaks (DSBs): strand invasion of a resected DSB end into a homologous double-stranded DNA (dsDNA) template sequence to initiate repair. However, repair of a DSB using single stranded DNA (ssDNA) as a template, a common method of CRISPR/Cas9-mediated gene editing, is Rad51-independent. We have analyzed the genetic requirements for these Rad51-independent events in Saccharomyces cerevisiae by creating a DSB with the site-specific HO endonuclease and repairing the DSB with 80-nt single-stranded oligonucleotides (ssODNs), and confirmed these results by Cas9-mediated DSBs in combination with a bacterial retron system that produces ssDNA templates in vivo. We show that single strand template repair (SSTR), is dependent on Rad52, Rad59, Srs2 and the Mre11-Rad50-Xrs2 (MRX) complex, but unlike other Rad51-independent recombination events, independent of Rdh54. We show that Rad59 acts to alleviate the inhibition of Rad51 on Rad52's strand annealing activity both in SSTR and in single strand annealing (SSA). Gene editing is Rad51-dependent when double-stranded oligonucleotides of the same size and sequence are introduced as templates. The assimilation of mismatches during gene editing is dependent on the activity of Msh2, which acts very differently on the 3' side of the ssODN which can anneal directly to the resected DSB end compared to the 5' end. In addition DNA polymerase Polδ's 3' to 5' proofreading activity frequently excises a mismatch very close to the 3' end of the template. We further report that SSTR is accompanied by as much as a 600-fold increase in mutations in regions adjacent to the sequences directly undergoing repair. These DNA polymerase ζ-dependent mutations may compromise the accuracy of gene editing.
Assuntos
Sistemas CRISPR-Cas/genética , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Endonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Oligonucleotídeos/genética , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Recombinases Rec A/genética , Saccharomyces cerevisiae/genética , DNA Polimerase tetaRESUMO
Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.
Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , RNA Helicases DEAD-box/metabolismo , DNA/genética , Reparo do DNA , Genoma Fúngico/genética , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted â¼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Assuntos
Elementos Alu/genética , Variações do Número de Cópias de DNA/genética , Instabilidade Genômica/genética , Duplicação Gênica/genética , Genoma Humano/genética , Humanos , Deleção de SequênciaRESUMO
Repair of DNA double-strand breaks (DSBs) requires eviction of the histones around DNA breaks to allow the loading of numerous repair and checkpoint proteins. However, the mechanism and regulation of this process remain poorly understood. Here, we show that histone H2B ubiquitination (uH2B) promotes histone eviction at DSBs independent of resection or ATP-dependent chromatin remodelers. Cells lacking uH2B or its E3 ubiquitin ligase Bre1 exhibit hyper-resection due to the loss of H3K79 methylation that recruits Rad9, a known negative regulator of resection. Unexpectedly, despite excessive single-strand DNA being produced, bre1Δ cells show defective RPA and Rad51 recruitment and impaired repair by homologous recombination and response to DNA damage. The HR defect in bre1Δ cells correlates with impaired histone loss at DSBs and can be largely rescued by depletion of CAF-1, a histone chaperone depositing histones H3-H4. Overexpression of Rad51 stimulates histone eviction and partially suppresses the recombination defects of bre1Δ mutant. Thus, we propose that Bre1 mediated-uH2B promotes DSB repair through facilitating histone eviction and subsequent loading of repair proteins.
Assuntos
Dano ao DNA , Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitinação , Trifosfato de Adenosina/química , Cromatina/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Cadeia Simples/química , Recombinação Homóloga , Microscopia de Fluorescência , Mutação , Recombinação Genética , Schizosaccharomyces/metabolismo , Análise de Sequência de RNARESUMO
During DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate DNA helicase is Pif1, an evolutionarily conserved helicase in Saccharomyces cerevisiae important for break-induced replication (BIR) as well as HR-dependent telomere maintenance in the absence of telomerase found in 10-15% of all cancers. Pif1 has a role in DNA synthesis across hard-to-replicate sites and in lagging-strand synthesis with polymerase δ (Polδ). Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Polδ recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half-crossovers. Purified Pif1 protein strongly stimulates Polδ-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Notably, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR.
Assuntos
Troca Genética , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , DNA Helicases/deficiência , DNA Helicases/genética , Reparo do DNA , DNA Fúngico/química , DNA Fúngico/metabolismo , Conformação de Ácido Nucleico , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The repair of chromosomal double strand breaks (DSBs) is crucial for the maintenance of genomic integrity. However, the repair of DSBs can also destabilize the genome by causing mutations and chromosomal rearrangements, the driving forces for carcinogenesis and hereditary diseases. Break-induced replication (BIR) is one of the DSB repair pathways that is highly prone to genetic instability. BIR proceeds by invasion of one broken end into a homologous DNA sequence followed by replication that can copy hundreds of kilobases of DNA from a donor molecule all the way through its telomere. The resulting repaired chromosome comes at a great cost to the cell, as BIR promotes mutagenesis, loss of heterozygosity, translocations, and copy number variations, all hallmarks of carcinogenesis. BIR uses most known replication proteins to copy large portions of DNA, similar to S-phase replication. It has therefore been suggested that BIR proceeds by semiconservative replication; however, the model of a bona fide, stable replication fork contradicts the known instabilities associated with BIR such as a 1,000-fold increase in mutation rate compared to normal replication. Here we demonstrate that in budding yeast the mechanism of replication during BIR is significantly different from S-phase replication, as it proceeds via an unusual bubble-like replication fork that results in conservative inheritance of the new genetic material. We provide evidence that this atypical mode of DNA replication, dependent on Pif1 helicase, is responsible for the marked increase in BIR-associated mutations. We propose that the BIR mode of synthesis presents a powerful mechanism that can initiate bursts of genetic instability in eukaryotes, including humans.
Assuntos
Quebra Cromossômica , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , DNA Fúngico/biossíntese , Saccharomyces cerevisiae/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , DNA Fúngico/genética , Instabilidade Genômica/genética , Mutagênese/genética , Fase S/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA.
Assuntos
DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sítios de Ligação , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quadruplex G , Instabilidade Genômica , Humanos , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
We investigated complex genomic rearrangements (CGRs) consisting of triplication copy-number variants (CNVs) that were accompanied by extended regions of copy-number-neutral absence of heterozygosity (AOH) in subjects with multiple congenital abnormalities. Molecular analyses provided observational evidence that in humans, post-zygotically generated CGRs can lead to regional uniparental disomy (UPD) due to template switches between homologs versus sister chromatids by using microhomology to prime DNA replication-a prediction of the replicative repair model, MMBIR. Our findings suggest that replication-based mechanisms might underlie the formation of diverse types of genomic alterations (CGRs and AOH) implicated in constitutional disorders.
Assuntos
Variações do Número de Cópias de DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Rearranjo Gênico/genética , Perda de Heterozigosidade/genética , Modelos Genéticos , Dissomia Uniparental/genética , Sequência de Bases , Humanos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Países Baixos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNARESUMO
Chromosomal double-strand breaks (DSBs) are resected by 5' nucleases to form 3' single-stranded DNA substrates for binding by homologous recombination and DNA damage checkpoint proteins. Two redundant pathways of extensive resection have been described both in cells and in vitro, one relying on Exo1 exonuclease and the other on Sgs1 helicase and Dna2 nuclease. However, it remains unknown how resection proceeds within the context of chromatin, where histones and histone-bound proteins represent barriers for resection enzymes. Here we identify the yeast nucleosome-remodelling enzyme Fun30 as a factor promoting DSB end resection. Fun30 is the major nucleosome remodeller promoting extensive Exo1- and Sgs1-dependent resection of DSBs. The RSC and INO80 chromatin-remodelling complexes and Fun30 have redundant roles in resection adjacent to DSB ends. ATPase and helicase domains of Fun30, which are needed for nucleosome remodelling, are also required for resection. Fun30 is robustly recruited to DNA breaks and spreads along the DSB coincident with resection. Fun30 becomes less important for resection in the absence of the histone-bound Rad9 checkpoint adaptor protein known to block 5' strand processing and in the absence of either histone H3 K79 methylation or γ-H2A, which mediate recruitment of Rad9 (refs 9, 10). Together these data suggest that Fun30 helps to overcome the inhibitory effect of Rad9 on DNA resection.
Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Exodesoxirribonucleases/metabolismo , Genes Fúngicos/genética , Genoma Fúngico/genética , Histonas/metabolismo , Recombinação Homóloga , Metilação , Nucleossomos/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genéticaRESUMO
DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins.