Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972980

RESUMO

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Assuntos
Antioxidantes , Aspergillus niger , Chumbo , Fosfatos , Fotossíntese , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Aspergillus niger/metabolismo , Chumbo/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico , Biodegradação Ambiental
2.
Small ; : e2401603, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751070

RESUMO

The field of 2D materials has advanced significantly with the emergence of MBenes, a new material derived from the MAX phases family, a novel class of materials that originates from the MAX phases family. Herein, this article explores the unique characteristics and morphological variations of MBenes, offering a comprehensive overview of their structural evolution. First, the discussion explores the evolutionary period of 2D MBenes associated with the several techniques for synthesizing, modifying, and characterizing MBenes to tailor their structure and enhance their functionality. The focus then shifts to the defect chemistry of MBenes, electronic, catalytic, and photothermal properties which play a crucial role in designing multifunctional solar-driven hybrid systems. Second, the recent advancements and potentials of 2D MBenes in solar-driven hybrid systems e.g. photo-electro catalysis, hybrid solar evaporators for freshwater and thermoelectric generators, and phototherapy, emphasizing their crucial significance in tackling energy and environmental issues, are explored. The study further explores the fundamental principles that regulate the improved photocatalytic and photothermal characteristics of MBenes, highlighting their promise for effective utilization of solar energy and remediation of the environment. The study also thoroughly assesses MBenes' scalability, stability, and cost effectiveness in solar-driven systems. Current insights and future directions allow researchers to utilize MBenes for sustainable and varied applications. This review regarding MBenes will be valuable to early researchers intrigued with synthesizing and utilizing 2D materials for solar-powered water-energy-fuel and phototherapy systems.

3.
J Fluoresc ; 34(2): 655-666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37338726

RESUMO

Morphology (size, shape) and structural variations (bonding pattern, crystallography, and atomic arrangements) have significant impacts on the efficacy of the metallic nanoparticles. Fabrication of these metal nanoparticles through green synthesis using plant extracts has increased attention due to their low cost, less hazardous byproducts, and multiple applications. In present study, Eucalyptus globulus extract was used to synthesize silver nanoparticles (AgNPs). Change of color from light brown to reddish brown and UV-visible spectral peak at 423 nm confirmed the formation of AgNPs. The shifting of FTIR spectra peaks indicated the potential role of the functional groups in extract as capping agents. The DLS evaluated the average size and stability of the nanoparticles while the surface morphology, size and the elemental composition of the AgNPs was established by the FESEM and EDX analysis. The SEM images revealed spherical nanoparticles of size ranging from 40-60 nm. Biogenic AgNPs showed better DPPH radical scavenging activity with IC50 (13.44 ± 0.3) as compared to leaves extract with IC50 (10.57 ± 0.2). The synthesized AgNPs showed higher zones of inhibition (ZOI) by well diffusion method against Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. Results of present study highlights the potential benefits of Eucalyptus globulus leaves extract-based AgNPs for various biomedical uses.


Assuntos
Eucalyptus , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Nanopartículas Metálicas/química , Temperatura , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Escherichia coli , Concentração de Íons de Hidrogênio
4.
Environ Res ; 247: 118127, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220075

RESUMO

Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.


Assuntos
Ecossistema , Ecótipo , Mudança Climática , Poaceae/química , Poaceae/metabolismo , Biomassa , Antioxidantes/metabolismo
5.
Environ Res ; 251(Pt 1): 118569, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431069

RESUMO

Topography of a place has a significant impact on soil characteristics that ultimately influence soil iodine levels. Lower Himalayan region (LHR) in Pakistan has a wide range of climatic and geological variations. Hence, an investigation was conducted to analyze the iodine concentration and other physicochemical properties of soils in two LHR districts, Haripur and Mansehra. Spatial analysis indicated a decrease in iodine levels in the mountainous regions in comparison to the flat portions of LHR. Soil samples obtained from different locations across Haripur had a stronger affinity for iodine due to variations in solubility and adsorption of iodine to soil clay components, which can be attributed to lower pH, higher organic matter, and a higher cation exchange capacity (CEC). In contrast to the plains of Haripur, elevated locations in the Mansehra district had decreased levels of iodine, along with a higher soil pH and reduced soil organic matter. The soil erosion and depletion of soil micronutrients in the hilly region of Mansehra may be attributed to the unfavorable soil conditions and excessive precipitation. Presence of clay, iron (Fe), and aluminum (Al) in the soil led to a rise in iodine levels. Iodine concentrations exhibited an inverse relationship with soil acidity. Study revealed a direct correlation between soil iodine levels and their cation exchange capacity (CEC) and clay content. This study aims to gather fundamental data for the chosen regions of LHR to address illnesses caused by iodine deficiency.


Assuntos
Iodo , Solo , Solo/química , Iodo/análise , Iodo/química , Paquistão , Concentração de Íons de Hidrogênio
6.
Bull Entomol Res ; : 1-10, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769861

RESUMO

Dengue fever is a viral disease caused by one of four dengue stereotypes (Flavivirus: Flaviviridae) that are primarily transmitted by Aedes albopictus (Skuse) and Aedes aegypti (L.). To safeguard public health, it is crucial to conduct surveys that examine the factors favouring the presence of these species. Our study surveyed 42 councils across four towns within the Bhakkar district of Punjab Province, by inspecting man-made or natural habitats containing standing water. First, door-to-door surveillance teams from the district health department were assigned to each council to surveillance Aedes species and dengue cases. Second, data collection through surveillance efforts, and validation procedures were implemented, and the verified data was uploaded onto the Dengue Tracking System by Third Party Validation teams. Third, data were analysed to identify factors influencing dengue fever cases. The findings demonstrated the following: (1) Predominantly, instances were discerned among individuals who had a documented history of having travelled beyond the confines of the province. (2) Containers associated with evaporative air coolers and tyre shops were responsible for approximately 30% of the Aedes developmental sites. (4) Variability in temperature was responsible for approximately 45% of the observed differences in the quantity of recorded Aedes mosquito developmental sites. (5) Implementation of dengue prevention initiatives precipitated a 50% reduction in Aedes-positive containers, alongside a notable 70% decline in reported cases of dengue fever during the period spanning 2019 to 2020, while the majority of reported cases were of external origin. Aedes control measures substantially curtailed mosquito populations and lowered vector-virus interactions. Notably, local dengue transmission was eliminated through advanced and effective Aedes control efforts, emphasising the need for persistent surveillance and eradication of larval habitats in affected regions.

7.
Ecotoxicol Environ Saf ; 281: 116616, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917589

RESUMO

The urgent need to address the severe environmental risk posed by chromium-contaminated industrial wastewater necessitates the development of eco-friendly cleanup methodologies. Utilizing the Ficus benghalensis plant extracts, the present study aims to develop green zinc oxide nanoparticles for the removal of Cr metal ions from wastewater. The leaves of Ficus benghalensis, often known as the banyan tree, were used to extract a solution for synthesizing ZnO NPs. These nanoparticles were developed with the goal of efficiently eliminating chromium (Cr) from industrial effluents. Batch studies were carried out to assess the efficiency of these synthesized ZnO NPs in treating leather industrial effluent, with aiming for optimal chromium removal. This involved measuring the nanoparticles' capacity to adsorb Cr ions from wastewater samples by comparing chromium levels before and after treatment. Removal efficiency for Cr was estimated through the batches such as optimization of pH, contact time, initial Cr concentration and sorbent dose of ZnO NPs were of the batches. These synthesized ZnO NPs were found to be successful in lowering chromium levels in wastewater to meet permissible limit. The nanoparticles exhibited their highest absorption capacity, reaching 94 % (46 mg/g) at pH 4, with a contact time of 7 hours with the optimum sorbent dose of 0.6 g/L. Hence, the excellent adsorption capabilities of these nanoparticles, together with their environmentally benign manufacturing technique, provide a long-term and efficient solution for chromium-contaminated wastewater treatment. Its novel nature has the potential to significantly improve the safety and cleanliness of water ecosystems, protecting the both i.e. human health and the environment.

8.
Environ Monit Assess ; 196(6): 541, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735978

RESUMO

Metal pollution in water, soil, and vegetation is an emerging environmental issue. Therefore, this study investigated the abundance of heavy metals (HMs) within roots and shoots of native plant species i.e., Bromus pectinatus, Cynodon dactylon, Poa annua, Euphorbia heliscopa, Anagallis arvensis, and Stellaria media grown in the adjoining area of municipal wastewater channels of a Pakistani city of Abbottabad. HMs concentrations (mg L-1) in municipal wastewater were: chromium (Cr) (0.55) > nickel (Ni) (0.09) > lead (Pb) (0.07) > cadmium (Cd) (0.03). Accumulation of HMs in both roots and shoots of plant species varied as B. pectinatus > C. dactylon > P. annua > E. heliscopa > A. arvensis > S. media. Irrespective of the plant species, roots exhibited higher concentrations of HMs than shoots. Higher amount of Cr (131.70 mg kg-1) was detected in the roots of B. pectinatus and the lowest amount (81 mg kg-1) in A. arvensis, Highest Cd concentration was found in the shoot of B. pectinatus and the lowest in the E. heliscopa. The highest concentration of Ni was found in the roots of S. media (37.40 mg kg-1) and the shoot of C. dactylon (15.70 mg kg-1) whereas the lowest Ni concentration was achieved in the roots of A. arvensis (12.10 mg kg-1) and the shoot of E. heliscopa (5.90 mg kg-1). The concentration of HMs in individual plant species was less than 1000 mg kg-1. Considering the higher values (> 1) of biological concentration factor (BCF), biological accumulation co-efficient (BAC), and translocation factor (TF), B. pectinatus and S. media species showed greater potential for HMs accumulation than other species. Therefore, these plants might be helpful for the remediation of HM-contaminated soil.


Assuntos
Monitoramento Ambiental , Metais Pesados , Raízes de Plantas , Poluentes do Solo , Águas Residuárias , Poluentes Químicos da Água , Metais Pesados/metabolismo , Águas Residuárias/química , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Paquistão , Poluentes do Solo/metabolismo , Brotos de Planta/metabolismo , Plantas/metabolismo
9.
Environ Res ; 228: 115852, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024034

RESUMO

Nanoparticles (NPs) preparation using a green as well as environmentally acceptable processes has achieved a lot of attention in recent decade. The current study compared the synthesis of titania (TiO2) nanoparticles synthesized from leaf extracts of two plant species (Trianthema portulacastrum, Chenopodium quinoa) and traditional approach by chemical preparation. The effects of no calcination on the physical characteristics of TiO2 NPs as well as their antifungal effects were examined and compared with the already reported calcinated TiO2 NPs. The produced TiO2 NPs were evaluated using high-tech techniques such as X-ray diffraction (XRD), scanning electron microscope, energy dispersive spectroscopy (EDX), and elemental mapping. TiO2 NPs prepared by sol-gel technique (T1) and prepared from extractions from leaves of T. portulacastrum (T2), and C. quinoa (T3) were either calcinated or non calcinated and tested against fungal disease (Ustilago tritici) of wheat for antifungal efficacy. The -peak (2θ) at 25.3 was confirmed by XRD to be connected with the anatase (101) form in both cases but before calcination, NPs were lacking the rutile and brookite peaks. The results showed that all types of TiO2 NPs examined had good antifungal activity against U. tritici, but those made from C. quinoa plant extract have good antifungal activity against disease. TiO2 NPs which are produced by the green methods (T2, T3) have the highest antifungal activity (58%, 57% respectively), while minimal activity (19%) was recorded when NPs were synthesized using the sol-gel method (T1) with 25 µl/mL. Non calcinated TiO2 NPs have less antifungal potential than calcined TiO2 NPs. It can be concluded that calcination may be preferred for efficient antifungal activity when using titania nanoparticles. The green technology may be used on a larger scale with less damaging TiO2 NP production and can be utilized against fungal disease on wheat crop to reduce crop losses worldwide.


Assuntos
Nanopartículas Metálicas , Micoses , Nanopartículas , Antifúngicos/farmacologia , Triticum , Titânio/farmacologia , Titânio/química , Nanopartículas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Difração de Raios X
10.
Environ Res ; 231(Pt 1): 116057, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149025

RESUMO

Cadmium (Cd) is a common toxic trace element found in agricultural soils which is mainly due to anthropogenic activities. Cadmium posed a significant risk to humans all around the world due to its cancer-causing ability. The current study demonstrated the effects of soil-applied biochar (BC) and foliar-applied titanium dioxide nanoparticles (TiO2 NPs) (at a rate of 0.5% and 75 mg/L respectively) alone or in combination on growth and Cd accumulation in wheat plants under field experiment. Soil applied BC and foliar TiO2 NPs, as well as BC coupled with TiO2 NPs, reduced Cd contents in grains by 32%, 47%, and 79%, than control respectively. The usage of NPs and BC boosted the plant height as well as chlorophyll contents by lowering oxidative injury and changing selected antioxidant enzyme activities in leaves than control plants. The combined use of NPs and BC prevented excess Cd accumulation in grains over the critical level (0.2 mg/kg) for cereals. The health risk index (HRI) due to Cd was reduced by 79% by co-composted BC + TiO2 NPs treatment than control. Although, HRI was lower than one for all treatments but this may exceed the limit if grains obtained from such field consumed over long periods. In conclusion, TiO2 NPs and BC amendments can be implemented in fields across the globe where excess Cd is present in soils. Additional studies on the use of such approaches in more precise experimental settings are needed in order to address this environmental problem at larger scale.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Triticum , Nanopartículas/toxicidade , Solo , Antioxidantes/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
11.
Environ Res ; 238(Pt 1): 117133, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729960

RESUMO

Removal of methyl iodide (CH3I) from the air present within nuclear facilities is a critical issue. In case of any nuclear accident, there is a great need to mitigate the radioactive organic iodide immediately as it accumulates in human bodies, causing severe consequences. Current research focuses on removing organic iodides, for which the surface of activated carbon (AC) was modified by impregnating it with different metals individually, i.e. Ag, Ni, Zn, Cu and with the novel combination of these four metals (AZNC). After the impregnation of metals, triethylenediamine (TEDA) was coated on metal impregnated activated carbon (IAC) surface. The adsorption capacity of the combination of four metals IAC was found to be 276 mg/g as the maximum for the trapping of CH3I. Whereas TEDA-metal impregnation on ACs enhanced the removal efficiency of CH3I up to 352 mg/g. After impregnation, adsorption capacity of AZNC and AZNCT is significantly higher as compared to AC. According to the finding, t5% of AZNCT IAC is 46 min, which is considerably higher than the t5% of other tested adsorbents. According to isotherm fitting data, Langmuir isotherm was found superior for describing CH3I sorption onto AC and IACs. Kinetics study shows that pseudo second order model represented the sorption of CH3I more accurately than the pseudo first order. Thermodynamic studies gave negative value of ΔG which shows that the reaction is spontaneous in nature. Based on the findings, AZNCT IAC appears to have a great potential for air purification applications in order to obtain clean environment.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Humanos , Metais , Piperazinas , Adsorção , Cinética , Concentração de Íons de Hidrogênio
12.
Ecotoxicol Environ Saf ; 263: 115231, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429088

RESUMO

Water contamination can be detrimental to the human health due to higher concentration of carcinogenic heavy metals such as chromium (Cr) in the wastewater. Many traditional methods are being employed in wastewater treatment plants for Cr removal to control the environmental impacts. Such methods include ion exchange, coagulation, membrane filtration, and chemical precipitation and microbial degradation. Recent advances in materials science and green chemistry have led to the development of nanomaterial that possess high specific surface areas and multiple functions, making them suitable for removing metals such as Cr from wastewater. Literature shows that the most efficient, effective, clean, and long-lasting approach for removing heavy metals from wastewater involves adsorbing heavy metals onto the surface of nanomaterial. This review assesses the removal methods of Cr from wastewater, advantages and disadvantages of using nanomaterial to remove Cr from wastewater and potential negative impacts on human health. The latest trends and developments in Cr removal strategies using nanomaterial adsorption are also explored in the present review.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Cromo/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio
13.
Ecotoxicol Environ Saf ; 268: 115701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979354

RESUMO

Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Triticum , Cádmio/análise , Cobre/farmacologia , Poluentes do Solo/análise , Nanopartículas/química , Solo/química , Óxidos/farmacologia
14.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37837064

RESUMO

Machine learning with deep neural networks (DNNs) is widely used for human activity recognition (HAR) to automatically learn features, identify and analyze activities, and to produce a consequential outcome in numerous applications. However, learning robust features requires an enormous number of labeled data. Therefore, implementing a DNN either requires creating a large dataset or needs to use the pre-trained models on different datasets. Multitask learning (MTL) is a machine learning paradigm where a model is trained to perform multiple tasks simultaneously, with the idea that sharing information between tasks can lead to improved performance on each individual task. This paper presents a novel MTL approach that employs combined training for human activities with different temporal scales of atomic and composite activities. Atomic activities are basic, indivisible actions that are readily identifiable and classifiable. Composite activities are complex actions that comprise a sequence or combination of atomic activities. The proposed MTL approach can help in addressing challenges related to recognizing and predicting both atomic and composite activities. It can also help in providing a solution to the data scarcity problem by simultaneously learning multiple related tasks so that knowledge from each task can be reused by the others. The proposed approach offers advantages like improved data efficiency, reduced overfitting due to shared representations, and fast learning through the use of auxiliary information. The proposed approach exploits the similarities and differences between multiple tasks so that these tasks can share the parameter structure, which improves model performance. The paper also figures out which tasks should be learned together and which tasks should be learned separately. If the tasks are properly selected, the shared structure of each task can help it learn more from other tasks.


Assuntos
Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , Humanos , Atividades Cotidianas , Redes Neurais de Computação , Aprendizado de Máquina
15.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050506

RESUMO

The analysis of sleep stages for children plays an important role in early diagnosis and treatment. This paper introduces our sleep stage classification method addressing the following two challenges: the first is the data imbalance problem, i.e., the highly skewed class distribution with underrepresented minority classes. For this, a Gaussian Noise Data Augmentation (GNDA) algorithm was applied to polysomnography recordings to seek the balance of data sizes for different sleep stages. The second challenge is the difficulty in identifying a minority class of sleep stages, given their short sleep duration and similarities to other stages in terms of EEG characteristics. To overcome this, we developed a DeConvolution- and Self-Attention-based Model (DCSAM) which can inverse the feature map of a hidden layer to the input space to extract local features and extract the correlations between all possible pairs of features to distinguish sleep stages. The results on our dataset show that DCSAM based on GNDA obtains an accuracy of 90.26% and a macro F1-score of 86.51% which are higher than those of our previous method. We also tested DCSAM on a well-known public dataset-Sleep-EDFX-to prove whether it is applicable to sleep data from adults. It achieves a comparable performance to state-of-the-art methods, especially accuracies of 91.77%, 92.54%, 94.73%, and 95.30% for six-stage, five-stage, four-stage, and three-stage classification, respectively. These results imply that our DCSAM based on GNDA has a great potential to offer performance improvements in various medical domains by considering the data imbalance problems and correlations among features in time series data.


Assuntos
Eletroencefalografia , Sono , Adulto , Humanos , Criança , Eletroencefalografia/métodos , Fases do Sono , Polissonografia/métodos , Algoritmos
16.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37420718

RESUMO

To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car.


Assuntos
Condução de Veículo , Condução de Veículo/psicologia , Acidentes de Trânsito/prevenção & controle , Automóveis , Redes Neurais de Computação , Algoritmos
17.
Environ Geochem Health ; 45(8): 5915-5925, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37184720

RESUMO

Heavy metals (HMs) are extensively found in occupationally exposed miners and industrial workers, which may cause serious health-related problems to the large workforce. In order to evaluate the impact of these toxic pollutants, we have investigated the effect of cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) concentration on exposed workers of mining, and woolen textile mill and compared the findings with unexposed individuals. From each category like exposed workers (mining, and woolen mill textile site) and unexposed individuals, 50 blood samples were taken. The occurrence of HMs in a sample was investigated through atomic absorption spectrometry while the oxidative stress marker malondialdehyde (MDA) and antioxidant enzyme statuses such as superoxide dismutase (SOD) and catalase (CAT) were analyzed in exposed and control samples. The results showed significant (p < 0.05) variation in Cd, Cr, Cu, and Pb levels in exposed and control samples. The concentration of Cd in the blood of WMWs, KMWs, and control group was 5.75, 3.89, and 0.42 µg/dL, respectively. On the other hand, the concentration of Pb in the blood of WMWs, MWs, and control was 32.34, 24.39, and 0.39 µg/dL while the concentrations of Cr and Cu in the blood of WMWs, MWs, and control group were 11.61 and 104.14 µg/dL, 4.21 and 113.21 µg/dL, 0.32 and 65.53 µg/dL, respectively. An increase in MDA was recorded in the exposed workers' group as compared to control subjects, whereas SOD and CAT activities decreased. Meanwhile, MDA was significantly and positively (p < 0.01) correlated with HMs, while negative significant correlations were found among HMs with SOD and CAT.


Assuntos
Cádmio , Metais Pesados , Cádmio/toxicidade , Cádmio/análise , Paquistão , Chumbo/toxicidade , Chumbo/análise , Metais Pesados/análise , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Cromo/toxicidade , Cromo/análise , Antioxidantes/metabolismo
18.
Environ Monit Assess ; 195(11): 1324, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845391

RESUMO

Terrestrial ecosystems are under the enormous pressure of land use management regimes through human disturbances, resulting in the disruption of biogeochemical cycles and associated ecosystem services. Nitrogen (N) in soil ecosystems is of vital importance for primary productivity, hence estimating the extent of these human interventions on N-cycling processes becomes imperative from economic and environmental perspectives. This work investigated the impacts of variable anthropogenic activities on N cycling in three different terrestrial ecosystems (arable, grassland, and forest) in three regions of lower Himalaya, Pakistan. Potential nitrification (PNA) and denitrification (DEA) enzyme activities, relative distribution of inorganic N species (NH4, NO3), and the role of inherent edaphic factors were assessed. Results revealed high nitrification potentials and increased nitrous oxide (N2O) emissions in the incubated soil microcosms, in the order as arable > grassland > forest ecosystems. Notably, higher rates of both studied processes (~ 30-50%) and elevated soil mineral nitrogen pool were observed in arable ecosystems. Forest soils, assumed as pristine ecosystems relying mainly on natural N fixation, produced (de)nitrification rates relatively lower than grasslands, followed by arable soils which were moderately disturbed through long-term fertilization and intensive land-use regimes. Linear regression modeling revealed that the inorganic N species (particularly NO3), and inherent edaphic factors were the key determinants of high (de)nitrification rates, hence warn of accelerated N losses in these ecosystems. The study highlights that elevated PNA and DEA being proxies for the altered N cycling in the studied terrestrial ecosystems are of great ecological relevance in view of predicted N2O budget in the lower Himalaya.


Assuntos
Desnitrificação , Ecossistema , Humanos , Paquistão , Monitoramento Ambiental , Nitrificação , Solo , Nitrogênio , Óxido Nitroso/análise , Microbiologia do Solo
19.
Environ Res ; 206: 112238, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688646

RESUMO

Cadmium (Cd) and arsenic (As) contamination of paddy soils is a serious global issue because of the opposite geochemical behavior of Cd and As in paddy soils. Rice plant (Oryza sativa L.) cultivation in Cd- and As- contaminated paddy soil is regarded as one of the main dietary cause of Cd and As entry in human beings. This study aimed to determine the impact of goethite-modified biochar (GB) on bioavailability of both Cd and As in Cd- and As- polluted paddy soil. Contrary to control and biochar (BC) amendments, the application of GB amendments significantly impeded the accumulation of both Cd and As in rice plants. The results confirmed an obvious reduction in Cd and As content of rice grains by 85% and 77%, respectively after soil supplementation with GB 2% amendment. BC 3% application minimized the Cd uptake by 59% in the rice grains as compared to the control but exhibited a little impact on As accumulation in rice grains. Sequential extraction results displayed an increase in immobile Cd and As fractions of the soil by decreasing the bioavailable fractions of both elements after GB treatments. Fe-plaque formation on the root surfaces was significantly variable (P Ë‚ 0.05) among all the amendments. GB 2% treatment significantly increased the Fe content (10 g kg-1) of root Fe-plaque by 48%, which ultimately enhanced the sequestration of Cd and As by Fe-plaque and minimized the transport of Cd and As in rice plants. Moreover, GB treatments significantly changed the relative abundance of the microbial community in the rice rhizosphere and minimized the metal(loid)s mobility in the soil. The relative abundance of Acidobacteria, Firmicutes and Verrucomicrobia increased with GB 2% treatment while those of Bacteroidetes and Choloroflexi decreased. Our findings confirmed improvement in the rice grains quality regarding enhanced amino acid contents with GB application. Overall, the results of this study demonstrated that GB amendment simultaneously alleviated the Cd and As concentrations in edible parts of rice plant and provided a new valuable method to protect the public health by effectively remediating the co-occurrence of Cd and As in paddy soils.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , Carvão Vegetal , Humanos , Compostos de Ferro , Minerais , Oryza/química , Solo/química , Poluentes do Solo/análise
20.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433198

RESUMO

Intelligent reflecting surfaces (IRS) and power-domain non-orthogonal multiple access (PD-NOMA) have recently gained significant attention for enhancing the performance of next-generation wireless communications networks. More specifically, IRS can smartly reconfigure the incident signal of the source towards the destination node, extending the wireless coverage and improving the channel capacity without consuming additional energy. On the other side, PD-NOMA can enhance the number of devices in the network without using extra spectrum resources. This paper proposes a new optimization framework for IRS-enhanced NOMA communications where multiple drones transmit data to the ground Internet of Things (IoT) devices under successive interference cancellation errors. In particular, the power budget of each drone, PD-NOMA power allocation of IoT devices, and the phase shift matrix of IRS are simultaneously optimized to enhance the total spectral efficiency of the system. Given the system model and optimization setup, the formulated problem is coupled with three variables, making it very complex and non-convex. Thus, this work first transforms and decouples the problem into subproblems and then obtains the efficient solution in two steps. In the first step, the closed-form solutions for the power budget and PD-NOMA power allocation subproblem at each drone are obtained through Karush-Kuhn-Tucker (KKT) conditions. In the second step, the subproblem of efficient phase shift design for each IRS is solved using successive convex approximation and DC programming. Numerical results demonstrate the performance of the proposed optimization scheme in comparison to the benchmark schemes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa