Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360734

RESUMO

Biomimetic design provides novel opportunities for enhancing and functionalizing biomaterials. Here we created a zirconia surface with cactus-inspired meso-scale spikes and bone-inspired nano-scale trabecular architecture and examined its biological activity in bone generation and integration. Crisscrossing laser etching successfully engraved 60 µm wide, cactus-inspired spikes on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with 200-300 nm trabecular bone-inspired interwoven structures on the entire surface. The height of the spikes was varied from 20 to 80 µm for optimization. Average roughness (Sa) increased from 0.10 µm (polished smooth surface) to 18.14 µm (80 µm-high spikes), while the surface area increased by up to 4.43 times. The measured dimensions of the spikes almost perfectly correlated with their estimated dimensions (R2 = 0.998). The dimensional error of forming the architecture was 1% as a coefficient of variation. Bone marrow-derived osteoblasts were cultured on a polished surface and on meso- and nano-scale hybrid textured surfaces with different spike heights. The osteoblastic differentiation was significantly promoted on the hybrid-textured surfaces compared with the polished surface, and among them the hybrid-textured surface with 40 µm-high spikes showed unparalleled performance. In vivo bone-implant integration also peaked when the hybrid-textured surface had 40 µm-high spikes. The relationships between the spike height and measures of osteoblast differentiation and the strength of bone and implant integration were non-linear. The controllable creation of meso- and nano-scale hybrid biomimetic surfaces established in this study may provide a novel technological platform and design strategy for future development of biomaterial surfaces to improve bone integration and regeneration.


Assuntos
Materiais Biomiméticos , Diferenciação Celular/efeitos dos fármacos , Nanoestruturas/química , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Zircônio , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cactaceae , Masculino , Nanoestruturas/ultraestrutura , Osteoblastos/citologia , Ratos , Ratos Sprague-Dawley , Zircônio/química , Zircônio/farmacologia
2.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991761

RESUMO

Titanium implants are the standard therapeutic option when restoring missing teeth and reconstructing fractured and/or diseased bone. However, in the 30 years since the advent of micro-rough surfaces, titanium's ability to integrate with bone has not improved significantly. We developed a method to create a unique titanium surface with distinct roughness features at meso-, micro-, and nano-scales. We sought to determine the biological ability of the surface and optimize it for better osseointegration. Commercially pure titanium was acid-etched with sulfuric acid at different temperatures (120, 130, 140, and 150 °C). Although only the typical micro-scale compartmental structure was formed during acid-etching at 120 and 130 °C, meso-scale spikes (20-50 µm wide) and nano-scale polymorphic structures as well as micro-scale compartmental structures formed exclusively at 140 and 150 °C. The average surface roughness (Ra) of the three-scale rough surface was 6-12 times greater than that with micro-roughness only, and did not compromise the initial attachment and spreading of osteoblasts despite its considerably increased surface roughness. The new surface promoted osteoblast differentiation and in vivo osseointegration significantly; regression analysis between osteoconductivity and surface variables revealed these effects were highly correlated with the size and density of meso-scale spikes. The overall strength of osseointegration was the greatest when the acid-etching was performed at 140 °C. Thus, we demonstrated that our meso-, micro-, and nano-scale rough titanium surface generates substantially increased osteoconductive and osseointegrative ability over the well-established micro-rough titanium surface. This novel surface is expected to be utilized in dental and various types of orthopedic surgical implants, as well as titanium-based bone engineering scaffolds.


Assuntos
Regeneração Óssea , Nanoestruturas/química , Osseointegração , Titânio/química , Animais , Adesão Celular , Diferenciação Celular , Células Cultivadas , Implantes Dentários , Masculino , Nanoestruturas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/metabolismo , Próteses e Implantes , Ratos , Propriedades de Superfície
3.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979313

RESUMO

Titanium (Ti) is an osteoconductive material that is routinely used as a bulk implant to fix and restore bones and teeth. This study explored the effective use of Ti as a bone engineering scaffold. Challenges to overcome were: (1) difficult liquid/cell infiltration into Ti microfiber scaffolds due to the hydrophobic nature of Ti; and (2) difficult cell attachment on thin and curved Ti microfibers. A recent discovery of UV-photofunctionalization of Ti prompted us to examine its effect on Ti microfiber scaffolds. Scaffolds in disk form were made by weaving grade 4 pure Ti microfibers (125 µm diameter) and half of them were acid-etched to roughen the surface. Some of the scaffolds with original or acid-etched surfaces were further treated by UV light before cell culture. Ti microfiber scaffolds, regardless of the surface type, were hydrophobic and did not allow glycerol/water liquid to infiltrate, whereas, after UV treatment, the scaffolds became hydrophilic and immediately absorbed the liquid. Osteogenic cells from two different origins, derived from the femoral and mandibular bone marrow of rats, were cultured on the scaffolds. The number of cells attached to scaffolds during the early stage of culture within 24 h was 3-10 times greater when the scaffolds were treated with UV. The development of cytoplasmic projections and cytoskeletal, as well as the expression of focal adhesion protein, were exclusively observed on UV-treated scaffolds. Osteoblastic functional phenotypes, such as alkaline phosphatase activity and calcium mineralization, were 2-15 times greater on UV-treated scaffolds, with more pronounced enhancement on acid-etched scaffolds compared to that on the original scaffolds. These effects of UV treatment were associated with a significant reduction in atomic carbon on the Ti microfiber surfaces. In conclusion, UV treatment of Ti microfiber scaffolds tunes their physicochemical properties and effectively enhances the attachment and function of osteoblasts, proposing a new strategy for bone engineering.


Assuntos
Osseointegração , Osteoblastos/metabolismo , Alicerces Teciduais/química , Titânio/efeitos da radiação , Animais , Células da Medula Óssea/citologia , Calcificação Fisiológica/fisiologia , Técnicas de Cultura de Células , Células Cultivadas , Fêmur/citologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Mandíbula/citologia , Microscopia Eletrônica de Varredura , Osteoblastos/química , Osteoblastos/enzimologia , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície/efeitos da radiação , Engenharia Tecidual , Titânio/química , Raios Ultravioleta
4.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244335

RESUMO

Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.


Assuntos
Cimentos Ósseos/farmacologia , Compostos de Boro/farmacologia , Radicais Livres/farmacologia , Metacrilatos/farmacologia , Metilmetacrilatos/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Artroplastia de Quadril , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/química , Células da Medula Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Boranos , Compostos de Boro/química , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Radicais Livres/química , Interações Hidrofóbicas e Hidrofílicas , Masculino , Teste de Materiais , Metacrilatos/química , Metilmetacrilato/química , Metilmetacrilatos/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteogênese/genética , Fenótipo , Polimerização , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Próteses e Implantes , Ratos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 20(16)2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31426563

RESUMO

Titanium micro-scale topography offers excellent osteoconductivity and bone-implant integration. However, the biological effects of sub-micron topography are unknown. We compared osteoblastic phenotypes and in vivo bone and implant integration abilities between titanium surfaces with micro- (1-5 µm) and sub-micro-scale (0.1-0.5 µm) compartmental structures and machined titanium. The calculated average roughness was 12.5 ± 0.65, 123 ± 6.15, and 24 ± 1.2 nm for machined, micro-rough, and sub-micro-rough surfaces, respectively. In culture studies using bone marrow-derived osteoblasts, the micro-rough surface showed the lowest proliferation and fewest cells attaching during the initial stage. Calcium deposition and expression of osteoblastic genes were highest on the sub-micro-rough surface. The bone-implant integration in the Sprague-Dawley male rat femur model was the strongest on the micro-rough surface. Thus, the biological effects of titanium surfaces are not necessarily proportional to the degree of roughness in osteoblastic cultures or in vivo. Sub-micro-rough titanium ameliorates the disadvantage of micro-rough titanium by restoring cell attachment and proliferation. However, bone integration and the ability to retain cells are compromised due to its lower interfacial mechanical locking. This is the first report on sub-micron topography on a titanium surface promoting osteoblast function with minimal osseointegration.


Assuntos
Interface Osso-Implante/fisiologia , Osseointegração , Osteoblastos/efeitos dos fármacos , Titânio/farmacologia , Animais , Proliferação de Células , Células Cultivadas , Masculino , Osteoblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Titânio/química
6.
Implant Dent ; 27(4): 405-414, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29851661

RESUMO

OBJECTIVES: Hydrophilicity/hydrophobicity of titanium surfaces may affect osseointegration. Ordinary titanium surfaces are hydrophobic. Recently, 2 different methods of storing titanium in saline solution or treating it with ultraviolet (UV) light were introduced to generate surface hydrophilicity. This study compared biological and physicochemical properties of 2 different hydrophilic titanium surfaces created by these methods. MATERIALS: Acid-etched control, saline-stored, and UV-treated titanium surfaces were assessed by scanning electron microscopy, energy dispersive spectroscopy, and x-ray photoelectron spectroscopy. The attachment, spreading behaviors, mineralization, and gene expression of osteoblasts were examined. RESULTS: Similar microroughness was found on control and UV-treated surfaces, whereas foreign deposits were observed on saline-stored surfaces. Control and UV-treated surfaces consisted of Ti, O, and C, whereas saline-stored surfaces showed Na and Cl in addition to these 3 elements. Atomic percentage of surface carbon was higher in order of control, saline-stored, and UV-treated surfaces. Osteoblasts cultured on saline-stored surfaces showed higher levels of calcium deposition and collagen I expression than control. Osteoblasts on UV-treated surfaces showed significantly increased levels for all parameters related to cell attachment, cell spreading, the expression of adhesion and cytoskeletal proteins, mineralization, and gene expression compared with control, outperforming saline-stored surfaces for most parameters. CONCLUSION: Despite similar hydrophilicity, saline-stored and UV light-treated surfaces showed substantially different biological effects on osseointegration, associated with different surface chemistry and morphology.


Assuntos
Osteoblastos/metabolismo , Titânio/química , Condicionamento Ácido do Dente , Adesão Celular , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Osseointegração/fisiologia , Espectroscopia Fotoeletrônica , Cloreto de Sódio , Espectrometria por Raios X , Propriedades de Superfície , Raios Ultravioleta
7.
J Prosthet Dent ; 118(3): 357-362, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28222880

RESUMO

STATEMENT OF PROBLEM: Despite its clinical benefits, the immediate loading protocol might have a higher risk of implant failure than the regular protocol. Ultraviolet (UV) photofunctionalization is a novel surface enhancement technique for dental implants. However, the effect of photofunctionalization under loading conditions is unclear. PURPOSE: The purpose of this animal study was to evaluate the effect of photofunctionalization on the biomechanical quality and strength of osseointegration under loaded conditions in a rat model. MATERIAL AND METHODS: Untreated and photofunctionalized, acid-etched titanium implants were placed into rat femurs. The implants were immediately loaded with 0.46 N of constant lateral force. The implant positions were evaluated after 2 weeks of healing. The strength of osseointegration was evaluated by measuring the bone-implant interfacial breakdown point during biomechanical push-in testing. RESULTS: Photofunctionalization induced hydrophilic surfaces on the implants. Osseointegration was successful in 28.6% of untreated implants and 100% of photofunctionalized implants. The strength of osseointegration in successful implants was 2.4 times higher in photofunctionalized implants than in untreated implants. The degree of tilt of untreated implants toward the origin of force was twice that of photofunctionalized implants. CONCLUSIONS: Within the limit of an animal model, photofunctionalization significantly increased the success of osseointegration and prevented implant tilt. Even for the implants that underwent successful osseointegration, the strength of osseointegration was significantly higher for photofunctionalized implants than for untreated implants. Further experiments are warranted to determine the effectiveness of photofunctionalization on immediately loaded dental implants.


Assuntos
Implantes Dentários , Osseointegração/fisiologia , Osseointegração/efeitos da radiação , Terapia Ultravioleta/métodos , Animais , Fenômenos Biomecânicos , Masculino , Modelos Animais , Ratos Sprague-Dawley , Propriedades de Superfície , Suporte de Carga
8.
J Oral Maxillofac Surg ; 74(4): 861.e1-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26704430

RESUMO

PURPOSE: Ultraviolet-mediated photofunctionalization is a new technology to improve bone and titanium integration. We hypothesized that photofunctionalization would enhance the stability of titanium screws used for segmental bone defects. MATERIALS AND METHODS: Disks were prepared of a titanium alloy (Ti6Al4V) for an in vitro study to evaluate the attachment, proliferation, and differentiation of osteoblasts. Commercially available Ti6Al4V screws were used in vivo. Segmental bone defects were created in rat femurs as an immediate loading reconstruction model. The defects were reconstructed with commercially available titanium plates and Ti6Al4V screws, with or without photofunctionalization. The screw survival rates and mechanical stability were evaluated at 2 and 4 weeks, and the bone formation around the screws was analyzed. RESULTS: Osteoblasts showed greater attachment, proliferation, and differentiation on the photofunctionalized Ti6Al4V disks. Photofunctionalized screws had significantly greater survival rates and mechanical stability at 2 and 4 weeks. The bone formation around the photofunctionalized screws was significantly greater than that around the untreated screws at 4 weeks. CONCLUSIONS: The results of the present study have demonstrated the efficacy of photofunctionalization on enhancing the survival and stability of Ti6Al4V screws under a loaded condition in the reconstruction of segmental defects. This was associated with increased bioactivity and bone formation around the photofunctionalized Ti6Al4V material.


Assuntos
Ligas/efeitos da radiação , Materiais Biocompatíveis/efeitos da radiação , Parafusos Ósseos , Interface Osso-Implante/efeitos da radiação , Fêmur/cirurgia , Titânio/efeitos da radiação , Raios Ultravioleta , Ligas/química , Animais , Materiais Biocompatíveis/química , Doenças Ósseas/cirurgia , Placas Ósseas , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Masculino , Teste de Materiais , Microscopia Eletrônica de Varredura , Osteoblastos/fisiologia , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Procedimentos de Cirurgia Plástica/instrumentação , Espectrometria por Raios X , Estresse Mecânico , Análise de Sobrevida , Fatores de Tempo , Titânio/química
9.
Implant Dent ; 25(6): 744-750, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27513161

RESUMO

OBJECTIVES: This study evaluated the effect of photofunctionalization on osseointegration under the biologically adverse conditions of aging. MATERIALS: First of all, bone marrow-derived osteoblastic cells from young (8 weeks old) and aged (15 months old) rats were biologically characterized. Then, the osteoblasts from aged rats were seeded on titanium discs with and without photofunctionalization, and assessed for initial cell attachment and osteoblastic functions. Titanium mini-implants, with and without photofunctionalization, were placed in the femur of aged rats, and the strength of osseointegration was measured at week 2 of healing. Periimplant tissue was examined morphologically and chemically using scanning electron microscopy and energy dispersive x-ray spectroscopy, respectively. RESULTS: Cells from the aged rats showed substantially reduced biological capabilities compared with those derived from young rats. The cells from aged rats showed significantly increased cell attachment and the expression of osteoblastic function on photofunctionalized titanium than on untreated titanium. In addition, the strength of osseointegration was increased by 40% in aged rats carrying the photofunctionalized implants. Robust bone formation was observed around the photofunctionalized implants with strong elemental peaks of calcium and phosphorus, whereas the tissue around untreated implants showed weaker calcium and phosphate signals than titanium ones. CONCLUSION: These in vivo and in vitro results corroboratively demonstrate that photofunctionalization is effective for enhancing osseointegration in aged rats.


Assuntos
Osseointegração/efeitos da radiação , Terapia Ultravioleta/métodos , Fatores Etários , Animais , Interface Osso-Implante/efeitos da radiação , Implantes Dentários , Fêmur/cirurgia , Masculino , Transplante de Células-Tronco Mesenquimais , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Espectrometria por Raios X , Titânio
10.
Materials (Basel) ; 14(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800383

RESUMO

Polymethylmethacrylate (PMMA)-based acrylic bone cement is commonly used to fix bone and metallic implants in orthopedic procedures. The polymerization initiator tri-n-butylborane (TBB) has been reported to significantly reduce the cytotoxicity of PMMA-based bone cement compared to benzoyl peroxide (BPO). However, it is unknown whether this benefit is temporary or long-lasting, which is important to establish given that bone cement is expected to remain in situ permanently. Here, we compared the biocompatibility of PMMA-TBB and PMMA-BPO bone cements over several days. Rat femur-derived osteoblasts were seeded onto two commercially-available PMMA-BPO bone cements and experimental PMMA-TBB polymerized for one day, three days, or seven days. Significantly more cells attached to PMMA-TBB bone cement during the initial stages of culture than on both PMMA-BPO cements, regardless of the age of the materials. Proliferative activity and differentiation markers including alkaline phosphatase production, calcium deposition, and osteogenic gene expression were consistently and considerably higher in cells grown on PMMA-TBB than on PMMA-BPO, regardless of cement age. Although osteoblastic phenotypes were more favorable on older specimens for all three cement types, biocompatibility increased between three-day-old and seven-day-old PMMA-BPO specimens, and between one-day-old and three-day-old PMMA-TBB specimens. PMMA-BPO materials produced more free radicals than PMMA-TBB regardless of the age of the material. These data suggest that PMMA-TBB maintains superior biocompatibility over PMMA-BPO bone cements over prolonged periods of at least seven days post-polymerization. This superior biocompatibility can be ascribed to both low baseline cytotoxicity and a further rapid reduction in cytotoxicity, representing a new biological advantage of PMMA-TBB as a novel bone cement material.

11.
Materials (Basel) ; 14(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396339

RESUMO

Early establishment of soft-tissue adhesion and seal at the transmucosal and transcutaneous surface of implants is crucial to prevent infection and ensure the long-term stability and function of implants. Herein, we tested the hypothesis that treatment of titanium with ultraviolet (UV) light would enhance its interaction with epithelial cells. X-ray spectroscopy showed that UV treatment significantly reduced the atomic percentage of surface carbon on titanium from 46.1% to 28.6%. Peak fitting analysis revealed that, among the known adventitious carbon contaminants, C-C and C=O groups were significantly reduced after UV treatment, while other groups were increased or unchanged in percentage. UV-treated titanium attracted higher numbers of human epithelial cells than untreated titanium and allowed more rapid cell spread. Hemi-desmosome-related molecules, integrin ß4 and laminin-5, were upregulated at the gene and protein levels in the cells on UV-treated surfaces. The result of the detachment test revealed twice as many cells remaining adherent on UV-treated than untreated titanium. The enhanced cellular affinity of UV-treated titanium was equivalent to laminin-5 coating of titanium. These data indicated that UV treatment of titanium enhanced the attachment, adhesion, and retention of human epithelial cells associated with disproportional removal of adventitious carbon contamination, providing a new strategy to improve soft-tissue integration with implant devices.

12.
Mater Sci Eng C Mater Biol Appl ; 100: 165-177, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948050

RESUMO

The objective of this study was to examine behavior and function of osteoblasts on saliva-contaminated titanium and its potential improvement after UV light treatment. Acid-etched titanium disks were contaminated with human saliva. Osteoblasts derived from rat femur were cultured on contaminated and clean titanium disks. Contaminated disks further treated with UV light were also tested. The number of attached cells, the degree of cell spreading, and the expression of adhesion protein were significantly decreased on saliva-contaminated surfaces compared with clean surfaces. The gene expression of osteocalcin was also downregulated on contaminated surfaces, whereas ALP activity and mineralization were not significantly influenced. The impaired functions on contaminated surfaces were significantly increased if the surfaces were further treated with UV and even outperformed the ones on clean titanium surfaces. XPS analysis revealed that the atomic percentage of carbon and nitrogen detected on contaminated surfaces were substantially decreased after UV treatment. These results suggest that osteoblastic behavior and function were compromised on titanium surfaces contaminated with saliva. The compromised functions no longer happened if the surfaces were further treated with UV light, providing the basis to understand the effect of biological contamination on osseointegration and to explore UV treatment as a decontaminating technology.


Assuntos
Saliva/química , Titânio/química , Raios Ultravioleta , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Humanos , Masculino , Microscopia Confocal , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/farmacologia
13.
Int J Oral Maxillofac Implants ; 34(5): 1105­1113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807627

RESUMO

PURPOSE: Antibacterial dental implants and related prosthetic components could help to reduce infection and prevent peri-implantitis. The purpose of this study was to determine the effect of ultraviolet (UV) light treatment of titanium on biofilm formation of human oral bacteria. MATERIALS AND METHODS: Machine-prepared commercially pure titanium disks were treated with UV light for 12 minutes. Human oral bacteria were seeded onto untreated and UV-treated disks. Early bacterial attachment to titanium was assessed at 12 hours. Surface topography of initial biofilms was evaluated by 3D scanning electron microscopy at 24 hours. The quantity and morphology of subsequent colony development and biofilm formation were examined by confocal laser scanning microscopy for up to 7 days. RESULTS: Throughout the time course, significantly fewer bacterial cells attached to UV-treated titanium surfaces compared to untreated ones. While biofilm developed rapidly to a final thickness of about 16 µm by day 3 on untreated titanium, on UV-treated surfaces it remained below 8 µm, even at day 7. Similarly, UV treatment resulted in 70% less exopolysaccharides (EPS) volume than on untreated surfaces at day 7. This is consistent with the finding that EPS production per cell was significantly lower on UV-treated surfaces. Untreated titanium surfaces covered with biofilm were 5-fold rougher than the original machined surface, while UV-treated surfaces remained 2-fold rougher due to a significantly less biofilm formation. CONCLUSION: UV treatment of titanium surfaces significantly reduces attachment of human oral bacteria and subsequent biofilm formation as well as EPS production for at least 7 days. UV treatment prevented the escalation of surface colonization, mitigating an unfavorable bacteriophilic cascade and environmental trigger for biofilm formation.


Assuntos
Biofilmes , Implantes Dentários , Bactérias , Humanos , Propriedades de Superfície , Titânio , Raios Ultravioleta
14.
J Oral Sci ; 60(4): 567-573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30587689

RESUMO

Titanium mesh plate (Ti mesh) used for bone augmentation inadvertently comes into contact with medical gloves during trimming and bending. We tested the hypotheses that glove contact degrades the biological capability of Ti mesh and that ultraviolet treatment (UV) can restore this capability. Three groups of Ti mesh specimens were prepared: as-received (AR), after glove contact (GC), and after glove contact followed by UV treatment. The AR and GC meshes were hydrophobic, but GC mesh was more hydrophobic. AR and GC meshes had significant amounts of surface carbon, and Si content was higher for GC mesh than for AR mesh. UV mesh was hydrophilic, and carbon and silicon content values were significantly lower in this group than in the AR and GC groups. The number, alkaline phosphatase activity, and mineralization ability of attached osteoblasts were significantly lower in the GC group than in the AR group and markedly higher in the UV group than in the AR group. In conclusion, glove contact caused chemical contamination of Ti mesh, which significantly reduced its bioactivity. UV treatment restored bioactivity in contaminated Ti mesh, which outperformed even the baseline Ti mesh.


Assuntos
Luvas Cirúrgicas , Osteoblastos/citologia , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Adesão Celular , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Telas Cirúrgicas
15.
Int J Nanomedicine ; 13: 3381-3395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922058

RESUMO

PURPOSE: Zirconia is a potential alternative to titanium for dental and orthopedic implants. Here we report the biological and bone integration capabilities of a new zirconia surface with distinct morphology at the meso-, micro-, and nano-scales. METHODS: Machine-smooth and roughened zirconia disks were prepared from yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), with rough zirconia created by solid-state laser sculpting. Morphology of the surfaces was analyzed by three-dimensional imaging and profiling. Rat femur-derived bone marrow cells were cultured on zirconia disks. Zirconia implants were placed in rat femurs and the strength of osseointegration was evaluated by biomechanical push-in test. RESULTS: The rough zirconia surface was characterized by meso-scale (50 µm wide, 6-8 µm deep) grooves, micro-scale (1-10 µm wide, 0.1-3 µm deep) valleys, and nano-scale (10-400 nm wide, 10-300 nm high) nodules, whereas the machined surface was flat and uniform. The average roughness (Ra) of rough zirconia was five times greater than that of machined zirconia. The expression of bone-related genes such as collagen I, osteopontin, osteocalcin, and BMP-2 was 7-25 times upregulated in osteoblasts on rough zirconia at the early stage of culture. The number of attached cells and rate of proliferation were similar between machined and rough zirconia. The strength of osseointegration for rough zirconia was twice that of machined zirconia at weeks two and four of healing, with evidence of mineralized tissue persisting around rough zirconia implants as visualized by electron microscopy and elemental analysis. CONCLUSION: This unique meso-/micro-/nano-scale rough zirconia showed a remarkable increase in osseointegration compared to machine-smooth zirconia associated with accelerated differentiation of osteoblasts. Cell attachment and proliferation were not compromised on rough zirconia unlike on rough titanium. This is the first report introducing a rough zirconia surface with distinct hierarchical morphology and providing an effective strategy to improve and develop zirconia implants.


Assuntos
Nanoestruturas/química , Osseointegração/efeitos dos fármacos , Próteses e Implantes , Zircônio/farmacologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Fêmur/cirurgia , Masculino , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteocalcina/metabolismo , Osteopontina/metabolismo , Ratos Sprague-Dawley , Propriedades de Superfície , Ítrio/química
16.
J Biomater Appl ; 30(8): 1242-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26656313

RESUMO

There are significant challenges in regenerating large volumes of bone tissue, and titanium implant therapy is extremely difficult or contraindicated when there is no supporting bone. Surface conditioning of titanium implants with UV light immediately prior to use, or photofunctionalization, improves the speed and degree of bone-implant integration. Here, we hypothesized that photofunctionalized titanium microfibers are capable of promoting bone ingrowth into the microfiber scaffold to improve bone-implant integration in bone defects. Titanium implants (1 mm in diameter, 2 mm in length) enfolded with 0.7 mm-thick titanium microfibers were placed into 2.4-mm diameter osteotomy in rat femurs. Titanium microfibers and implants were photofunctionalized by treatment with UV light for 12 min using a photo device immediately prior to surgery. Photofunctionalized microfibers and implants were hydrophilic, while as-made microfiber-enfolded implants were hydrophobic. Implant anchorage strength was 2.5 times and 2.2 times greater for photofunctionalized microfiber-enfolded implants than as-made ones at weeks 2 and 4 of healing, respectively. Robust bone formation was only seen at the implant surface of photofunctionalized microfiber-enfolded implants. Bone formation as measured by the Ca/Ti ratio was 5 to over 20 times greater for photofunctionalized than as-made microfiber scaffolds. The Ca/P ratio was 1.55-1.65 in the tissue produced in photofunctionalized microfibers and 1.1-1.3 in tissue in as-made microfibers. In vitro, the number of attached osteoblasts and their alkaline phosphatase activity, both near zero on as-received microfibers, were significantly increased on photofunctionalized microfibers. In conclusion, bone ingrowth occurred in photofunctionalized titanium microfiber scaffolds, enabling successful bone-implant integration when the microfiber-enfolded implants were placed in a site without primary bone support. The combined use of titanium microfibers and photofunctionalization may provide a novel and effective strategy to regenerate and integrate bone in a wider range of applications.


Assuntos
Substitutos Ósseos/química , Fêmur/cirurgia , Osseointegração , Osteoblastos/citologia , Alicerces Teciduais/química , Titânio/química , Animais , Interface Osso-Implante/fisiologia , Interface Osso-Implante/efeitos da radiação , Fêmur/lesões , Fêmur/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Osteogênese , Ratos Sprague-Dawley , Propriedades de Superfície , Raios Ultravioleta
17.
Int J Oral Maxillofac Implants ; 31(1): 73-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800164

RESUMO

PURPOSE: The aim of this study was to evaluate whether photofunctionalization of titanium mesh enhances its osteoconductive capability. MATERIALS AND METHODS: The titanium mesh (0.2 mm thickness) used in this study was made of commercially pure grade-2 titanium and had hexagonal apertures (2 mm width). Photofunctionalization was performed by treating titanium mesh with UV light for 12 minutes using a photo device immediately before use. Untreated or photofunctionalized titanium mesh was placed into rat femurs, and bone generation around titanium mesh was profiled using three-dimensional (3D) microcomputed tomography (micro-CT). A set of in vitro experiments was conducted using bone marrow-derived osteoblasts. RESULTS: Photofunctionalized titanium mesh surfaces were characterized by the regenerated hydrophilicity and significantly reduced surface carbon. Bone generation profiling at week 3 of healing showed that the hexagonal apertures in photofunctionalized mesh were 95% filled, but they were only 57% filled in untreated mesh, particularly with the center zone remaining as a gap. Bone profiling in slices parallel to the titanium surface showed that photofunctionalized titanium mesh achieved 90% bone occupancy 0 to 400 µm from the surface, compared with only 35% for untreated mesh. Bone occupancy remained as high as 55% 800 to 1,200 µm from photofunctionalized titanium mesh surfaces, compared with less than 20% for untreated mesh. In vitro, photofunctionalized titanium mesh expedited and enhanced attachment and spread of osteoblasts, and increased ALP activity and the rate of mineralization. CONCLUSION: This study may provide novel and advanced metrics describing the osteoconductive property of photofunctionalized titanium mesh. Specifically, photofunctionalization not only increased the breadth, but also the 3D range, of osteoconductivity of titanium mesh, enabling space-filling and far-reaching osteoconductivity. Further translational and clinical studies are warranted to establish photofunctionalized titanium mesh as a novel clinical tool for better bone regeneration and augmentation.


Assuntos
Materiais Biocompatíveis/efeitos da radiação , Osteogênese/fisiologia , Telas Cirúrgicas , Titânio/efeitos da radiação , Adsorção , Albuminas/química , Fosfatase Alcalina/análise , Animais , Materiais Biocompatíveis/química , Calcificação Fisiológica/fisiologia , Adesão Celular/fisiologia , Contagem de Células , Movimento Celular/fisiologia , Proliferação de Células , Forma Celular , Células Cultivadas , Fêmur/patologia , Fêmur/cirurgia , Interações Hidrofóbicas e Hidrofílicas , Imageamento Tridimensional/métodos , Masculino , Osteoblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/química , Raios Ultravioleta , Microtomografia por Raio-X/métodos
18.
Biomaterials ; 108: 177-86, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27639113

RESUMO

The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium.


Assuntos
Antioxidantes/química , Citocinas/imunologia , Osteoblastos/fisiologia , Espécies Reativas de Oxigênio/imunologia , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Animais , Células Cultivadas , Masculino , Teste de Materiais , Osteoblastos/citologia , Doses de Radiação , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície/efeitos da radiação
19.
Biomed Res ; 36(1): 55-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25749151

RESUMO

Ultraviolet (UV) treatment immediately prior to use is attracting attention as an effective surface conditioning method for titanium to improve osteoblast-affinity. The affinity of titanium to osteoblasts in two-dimensional plate culture has been well studied, but that in three-dimensional cultures remains unclear. Here, we examined the effect of UV treatment on titanium scaffolds, comprising micro-thin titanium fibers, used in bone engineering. Titanium scaffolds, with and without UV treatment, were seeded with rat bone marrow derived osteoblasts, and the number of cells attached to scaffolds and osteoblastic phenotype in the cultures were examined. UV treatment improved the wettability of scaffolds and significantly reduced the percentage of surface carbon. Along with these physicochemical changes in the scaffolds, cell attachment increased by a factor of 1.3 as compared to that of the untreated control. In addition, alkaline phosphatase activity and calcium deposition significantly increased by a factor of 2.3 and 2.0, respectively. Robust formation of mineralized structures consisting of clear peaks of calcium and phosphorus was observed in the UV-treated scaffolds. The observed increase in osteoblast affinity and capability of mineralized matrix formation indicates the potential use of UV-treated titanium scaffolds for bone engineering.


Assuntos
Osteoblastos/citologia , Alicerces Teciduais , Titânio/efeitos da radiação , Raios Ultravioleta , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Adesão Celular/efeitos da radiação , Técnicas de Cultura de Células , Proliferação de Células/efeitos da radiação , Masculino , Microscopia Eletrônica de Varredura , Osteoblastos/fisiologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Titânio/química , Molhabilidade
20.
J Biomater Appl ; 29(10): 1372-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25604095

RESUMO

Cell sheet technology has been used to deliver cells in single-sheet form with an intact extracellular matrix for soft tissue repair and regeneration. Here, we hypothesized that titanium-reinforced cell sheets could be constructed for bone tissue engineering and regeneration. Fifty-µm-thick titanium plates containing apertures were prepared and roughened by acid etching, some of which were photofunctionalized with 12 min of UV light treatment. Cell sheets were prepared by culturing rat calvarial periosteum-derived cells on temperature-responsive culture dishes and attached to titanium plates. Titanium-reinforced osteogenic cell sheet construction was conditional on various technical and material factors: cell sheets needed to be double-sided and sandwich the titanium plate, and the titanium plates needed to be micro thin and contain apertures to allow close apposition of the two cell sheets. Critically, titanium plates needed to be UV-photofunctionalized to ensure adherence and retention of cell sheets. Single-sided cell sheets or double-sided cell sheets on as-made titanium contracted and deformed within 4 days of incubation. Titanium-reinforced cell sheets on photofunctionalized titanium were structurally stable at least up to 14 days, developed the expected osteogenic phenotypes (ALP production and mineralization), and maintained structural integrity without functional degradation. Successful construction of titanium-reinforced osteogenic cell sheets was associated with increased cell attachment, retention, and expression of vinculin, an adhesion protein by photofunctionalization. This study identified the technical and material requirements for constructing titanium-reinforced osteogenic cell sheets. Future in vivo studies are warranted to test these titanium-reinforced cell sheets as stably transplantable, mechanically durable, and shape controllable osteogenic devices.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Osteogênese , Titânio , Animais , Células Cultivadas , Teste de Materiais , Microscopia Eletrônica de Varredura , Periósteo/citologia , Ratos , Propriedades de Superfície , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa