Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(3): 805-817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983622

RESUMO

Ascorbate plays an indispensable role in plants, functioning as both an antioxidant and a cellular redox buffer. It is widely acknowledged that the ascorbate biosynthesis in the photosynthetic tissues of land plants is governed by light-mediated regulation of the D-mannose/L-galactose (D-Man/L-Gal) pathway. At the core of this light-dependent regulation lies the VTC2 gene, encoding the rate-limiting enzyme GDP-L-Gal phosphorylase. The VTC2 expression is regulated by signals via the photosynthetic electron transport system. In this study, we directed our attention to the liverwort Marchantia polymorpha, representing one of the basal land plants, enabling us to conduct an in-depth analysis of its ascorbate biosynthesis. The M. polymorpha genome harbors a solitary gene for each enzyme involved in the D-Man/L-Gal pathway, including VTC2, along with three lactonase orthologs, which may be involved in the alternative ascorbate biosynthesis pathway. Through supplementation experiments with potential precursors, we observed that only L-Gal exhibited effectiveness in ascorbate biosynthesis. Furthermore, the generation of VTC2-deficient mutants through genome editing unveiled the inability of thallus regeneration in the absence of L-Gal supplementation, thereby revealing the importance of the D-Man/L-Gal pathway in ascorbate biosynthesis within M.  polymorpha. Interestingly, gene expression analyses unveiled a distinct characteristic of M. polymorpha, where none of the genes associated with the D-Man/L-Gal pathway, including VTC2, showed upregulation in response to light, unlike other known land plants. This study sheds light on the exceptional nature of M. polymorpha as a land plant that has evolved distinctive mechanisms concerning ascorbate biosynthesis and its regulation.


Assuntos
Marchantia , Humanos , Marchantia/genética , Marchantia/metabolismo , Galactose/metabolismo , Manose/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 114(1): 68-82, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36694959

RESUMO

Ascorbate is an indispensable redox buffer essential for plant growth and stress acclimation. Its oxidized form, dehydroascorbate (DHA), undergoes rapid degradation unless it is recycled back into ascorbate by glutathione (GSH)-dependent enzymatic or non-enzymatic reactions, with the enzymatic reactions catalyzed by dehydroascorbate reductases (DHARs). Our recent study utilizing an Arabidopsis quadruple mutant (∆dhar pad2), which lacks all three DHARs (∆dhar) and is deficient in GSH (pad2), has posited that these GSH-dependent reactions operate in a complementary manner, enabling a high accumulation of ascorbate under high-light stress. However, as Arabidopsis DHAR functions in the cytosol or chloroplasts, it remained unclear which isoform played a more significant role in cooperation with GSH-dependent non-enzymatic reactions. To further comprehend the intricate network of ascorbate recycling systems in plants, we generated mutant lines lacking cytosolic DHAR1/2 or chloroplastic DHAR3, or both, in another GSH-deficient background (cad2). A comprehensive comparison of ascorbate profiles in these mutants under conditions of photooxidative stress induced by various light intensities or methyl viologen unequivocally demonstrated that chloroplastic DHAR3, but not cytosolic isoforms, works in concert with GSH to accumulate ascorbate. Our findings further illustrate that imbalances between stress intensity and recycling capacity significantly impact ascorbate pool size and tolerance to photooxidative stress. Additionally, it was found that the absence of DHARs and GSH deficiency do not impede ascorbate biosynthesis, at least in terms of transcription or activity of biosynthetic enzymes. This study provides insights into the robustness of ascorbate recycling.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Cloroplastos/metabolismo , Estresse Oxidativo
3.
J Exp Bot ; 75(9): 2700-2715, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38367016

RESUMO

Ascorbate peroxidase (APX) reduces H2O2 to H2O by utilizing ascorbate as a specific electron donor and constitutes the ascorbate-glutathione cycle in organelles of plants including chloroplasts, cytosol, mitochondria, and peroxisomes. It has been almost 40 years since APX was discovered as an important plant-specific H2O2-scavenging enzyme, during which time many research groups have conducted molecular physiological analyses. It is now clear that APX isoforms function not only just as antioxidant enzymes but also as important factors in intracellular redox regulation through the metabolism of reactive oxygen species. The function of APX isoforms is regulated at multiple steps, from the transcriptional level to post-translational modifications of enzymes, thereby allowing them to respond flexibly to ever-changing environmental factors and physiological phenomena such as cell growth and signal transduction. In this review, we summarize the physiological functions and regulation mechanisms of expression of each APX isoform.


Assuntos
Ascorbato Peroxidases , Isoenzimas , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/enzimologia , Plantas/metabolismo , Isoformas de Proteínas/metabolismo
4.
J Exp Bot ; 75(9): 2599-2603, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699987

RESUMO

This Special Issue was assembled to mark the 25th anniversary of the proposal of the d -mannose/ l -galactose (Smirnoff-Wheeler) ascorbate biosynthesis pathway in plants ( Wheeler et al., 1998 ). The issue aims to assess the current state of knowledge and to identify outstanding questions about ascorbate metabolism and functions in plants.


Assuntos
Ácido Ascórbico , Plantas , Ácido Ascórbico/metabolismo , Plantas/metabolismo
5.
J Exp Bot ; 75(9): 2664-2681, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452239

RESUMO

Plants accumulate high concentrations of ascorbate, commonly in their leaves, as a redox buffer. While ascorbate levels have increased during plant evolution, the mechanisms behind this phenomenon are unclear. Moreover, has the increase in ascorbate concentration been achieved without imposing any detrimental effects on the plants? In this review, we focus on potential transitions in two regulatory mechanisms related to ascorbate biosynthesis and the availability of cellular dehydroascorbate (DHA) during plant evolution. The first transition might be that the trigger for the transcriptional induction of VTC2, which encodes the rate-limiting enzyme in ascorbate biosynthesis, has shifted from oxidative stress (in green algae) to light/photosynthesis (in land plants), probably enabling the continuous accumulation of ascorbate under illumination. This could serve as a preventive system against the unpredictable occurrence of oxidative stress. The second transition might be that DHA-degrading enzymes, which protect cells from the highly reactive DHA in green algae and mosses, have been lost in ferns or flowering plants. Instead, flowering plants may have increased glutathione concentrations to reinforce the DHA reduction capacity, possibly allowing ascorbate accumulation and avoiding the toxicity of DHA. These potential transitions may have contributed to strategies for plants' safe and effective accumulation of ascorbate.


Assuntos
Ácido Ascórbico , Evolução Biológica , Plantas , Ácido Ascórbico/metabolismo , Plantas/metabolismo , Estresse Oxidativo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38925644

RESUMO

Euglena gracilis, a fascinating organism in the scientific realm, exhibits characteristics of both animals and plants. It maintains redox homeostasis through a variety of enzymatic and nonenzymatic antioxidant molecules. In contrast to mammals, Euglena possesses non-selenocysteine glutathione peroxidase homologues that regulate its intracellular pools of reactive oxygen species. In the present study, a full-length cDNA of chloroplastic EgGPXL-1 was isolated and subjected to biochemical and functional characterization. Recombinant EgGPXL-1 scavenged H2O2 and t-BOOH utilizing thioredoxin as an electron donor rather than glutathione. Despite its monomeric nature, EgGPXL-1 exhibits allosteric behavior with H2O2 as the electron acceptor and follows typical Michaelis-Menten kinetics with t-BOOH. Suppression of EgGPXL-1 gene expression under normal and high-light conditions did not induce critical situations in E. gracilis, suggesting the involvement of compensatory mechanisms in restoring normal conditions.

7.
BMC Endocr Disord ; 23(1): 239, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904164

RESUMO

BACKGROUND: Autoantibodies develop in autoimmune diseases, cancer, diabetes mellitus (DM), and atherosclerosis-related diseases. However, autoantibody biomarkers have not been successfully examined for diagnosis and therapy. METHODS: Serological identification of antigens through recombinant cDNA expression cloning (SEREX) was used for primary screening of antigens. The cDNA product was expressed in bacteria and purified. Amplified luminescent proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) was used to evaluate antibody levels in serum samples. RESULTS: Phosphoenolpyruvate carboxykinase 1 (PCK1) was recognized as an antigen by serum IgG antibodies in the sera of patients with atherosclerosis. AlphaLISA showed significantly higher serum antibody levels against recombinant PCK1 protein in patients with DM and cardiovascular disease than in healthy donors, but not in those with acute ischemic stroke, transient ischemic attack, or obstructive sleep apnea syndrome. The area under the receiver operating characteristic curve for anti-PCK1 antibodies was 0.7024 for DM. The serum anti-PCK1 antibody levels were associated with age, platelet count, and blood pressure. Anti-PCK1-antibody-positive patients showed significantly lower overall survival than the negative patients. CONCLUSIONS: Serum anti-PCK1 antibody levels were found to be associated with DM. The anti-PCK1 antibody marker is useful for predicting the overall survival of patients with DM.


Assuntos
Aterosclerose , Diabetes Mellitus , AVC Isquêmico , Humanos , DNA Complementar , Prognóstico , Diabetes Mellitus/diagnóstico , Autoanticorpos , Proteínas Recombinantes , Fosfoenolpiruvato Carboxiquinase (GTP) , Peptídeos e Proteínas de Sinalização Intracelular
8.
Biosci Biotechnol Biochem ; 87(11): 1332-1335, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37550223

RESUMO

Ascorbate recycling is required for high ascorbate accumulation. Hence, when the ascorbate pool size is small, does the demand for ascorbate recycling decrease? We herein investigate the impact of ascorbate recycling capacity on ascorbate pool size in an ascorbate-deficient background. Our findings demonstrate that a smaller ascorbate pool size lowers the need for ascorbate recycling capacity even under light stress.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Ácido Ascórbico
9.
Biosci Biotechnol Biochem ; 87(5): 491-500, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869792

RESUMO

Light-independent functions of carotenoids in photosynthetic organisms are poorly understood. Here, we investigated the growth properties of microalga, Euglena gracilis, under altered light and temperature using norflurazon-treated carotenoid-deficient cells and genetically modified strains, including nonphotosynthetic SM-ZK and colorless cl4. Norflurazon treatment decreased carotenoid and chlorophyll contents, causing cell bleaching. SM-ZK strain had lower carotenoid content than wild-type (WT) strain, and it was below the detectable level in the cl4 strain. Norflurazon treatment decreased phytoene synthase EgCrtB levels, although EgcrtB was transcriptionally induced. Carotenoid deficiency in norflurazon-treated cells and the cl4 strain caused similar extents of delayed growth under light and dark conditions at 25 °C, indicating that carotenoids promote growth in darkness. Both WT and SM-ZK strains exhibited similar growth rates. Dark conditions at 20 °C enhanced the growth delay of norflurazon-treated cells and the cl4 strain. These results indicate that carotenoids impart environmental stress tolerance to E. gracilis in light-dependent and light-independent manners.


Assuntos
Euglena gracilis , Euglena , Luz , Escuridão , Clorofila , Carotenoides
10.
Plant J ; 107(6): 1724-1738, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245628

RESUMO

Ascorbate is an abundant and indispensable redox compound in plants. Genetic and biochemical studies have established the d-mannose/l-galactose (d-Man/l-Gal) pathway as the predominant ascorbate biosynthetic pathway in streptophytes, while the d-galacturonate (d-GalUA) pathway is found in prasinophytes and euglenoids. Based on the presence of the complete set of genes encoding enzymes involved in the d-Man/l-Gal pathway and an orthologous gene encoding aldonolactonase (ALase) - a key enzyme for the d-GalUA pathway - Physcomitrium patens may possess both pathways. Here, we have characterized the moss ALase as a functional lactonase and evaluated the ascorbate biosynthesis capability of the two pathways using knockout mutants. Physcomitrium patens expresses two ALase paralogs, namely PpALase1 and PpALase2. Kinetic analyses with recombinant enzymes indicated that PpALase1 is a functional enzyme catalyzing the conversion of l-galactonic acid to the final precursor l-galactono-1,4-lactone and that it also reacts with dehydroascorbate as a substrate. Interestingly, mutants lacking PpALase1 (Δal1) showed 1.2-fold higher total ascorbate content than the wild type, and their dehydroascorbate content was increased by 50% compared with that of the wild type. In contrast, the total ascorbate content of mutants lacking PpVTC2-1 (Δvtc2-1) or PpVTC2-2 (Δvtc2-2), which encode the rate-limiting enzyme GDP-l-Gal phosphorylase in the d-Man/l-Gal pathway, was markedly decreased to 46 and 17%, respectively, compared with that of the wild type. Taken together, the dominant ascorbate biosynthetic pathway in P. patens is the d-Man/l-Gal pathway, not the d-GalUA pathway, and PpALase1 may play a significant role in ascorbate metabolism by facilitating dehydroascorbate degradation rather than ascorbate biosynthesis.


Assuntos
Ácido Ascórbico/biossíntese , Bryopsida/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Galactose/metabolismo , Manose/metabolismo , Ácido Ascórbico/metabolismo , Bryopsida/genética , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genoma de Planta , Cinética , Luz , Redes e Vias Metabólicas , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares Ácidos/metabolismo
11.
Plant J ; 107(3): 876-892, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34028907

RESUMO

High-light (HL) stress enhances the production of H2 O2 from the photosynthetic electron transport chain in chloroplasts, potentially causing photo-oxidative damage. Although stromal and thylakoid membrane-bound ascorbate peroxidases (sAPX and tAPX, respectively) are major H2 O2 -scavenging enzymes in chloroplasts, their knockout mutants do not exhibit a visible phenotype under HL stress. Trans-thylakoid proton gradient (∆pH)-dependent mechanisms exist for controlling H2 O2 production from photosynthesis, such as thermal dissipation of light energy and downregulation of electron transfer between photosystems II and I, and these may compensate for the lack of APXs. To test this hypothesis, we focused on a proton gradient regulation 5 (pgr5) mutant, wherein both ∆pH-dependent mechanisms are impaired, and an Arabidopsis sapx tapx double mutant was crossed with the pgr5 single mutant. The sapx tapx pgr5 triple mutant exhibited extreme sensitivity to HL compared with its parental lines. This phenotype was consistent with cellular redox perturbations and enhanced expression of many oxidative stress-responsive genes. These findings demonstrate that the PGR5-dependent mechanisms compensate for chloroplast APXs, and vice versa. An intriguing finding was that the failure of induction of non-photochemical quenching in pgr5 (because of the limitation in ∆pH formation) was partially recovered in sapx tapx pgr5. Further genetic studies suggested that this recovery was dependent on the NADH dehydrogenase-like complex-dependent pathway for cyclic electron flow around photosystem I. Together with data from the sapx tapx npq4 mutant, we discuss the interrelationship between APXs and ∆pH-dependent mechanisms under HL stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Antioxidantes , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/genética , Proteínas de Cloroplastos/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Complexos de Proteínas Captadores de Luz/genética , Mutação , Oxirredução , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II/genética , Estresse Fisiológico/efeitos da radiação , Proteínas das Membranas dos Tilacoides/genética
12.
Inorg Chem ; 61(10): 4476-4483, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35226490

RESUMO

High-pressure techniques open exploration of functional materials in broad research fields. An established diamond anvil cell with a boron-doped diamond heater and transport measurement terminals has performed the high-pressure synthesis of a cubic Sn3S4 superconductor. X-ray diffraction and Raman spectroscopy reveal that the Sn3S4 phase is stable in the pressure range of P > 5 GPa in a decompression process. Transport measurement terminals in the diamond anvil cell detect a metallic nature and superconductivity in the synthesized Sn3S4 with a maximum onset transition temperature (Tconset) of 13.3 K at 5.6 GPa. The observed pressure-Tc relationship is consistent with that from the first-principles calculation. The observation of superconductivity in Sn3S4 opens further materials exploration under high-temperature and -pressure conditions.

13.
J Phys Chem A ; 126(43): 8082-8087, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36264275

RESUMO

In this paper, we explored stable states in the system of 2,4,6-trinitrotoluene (TNT) crystal with a few additional hydrogen radicals (Hadd's) using a structure-search scheme based on first-principles calculations and an evolutionary algorithm (EA) to get insights into the decomposition process of TNT. We introduced three evolutionary operators acting on Hadd's and transforming only local structures of TNT molecules: "displacement", "permutation", and "mating". We searched for stable structures by increasing the number of Hadd's (n) from 1 to 2, 3, 4, 6, and 8 and constructed a convex-hull diagram for the formation energy from solid TNT and solid hydrogen. We showed that the system of n = 6 had the largest energy reduction, in which five of the eight TNT molecules in the calculation cell were transformed into NO, H2O, C2H3N, C2NO3H3, C8N2O4H7, C9N2O8H5, and C14N7O12H11. Analysis of the structural transformations observed during the EA search indicates that (1) the Hadd's approaching the TNT molecules react with C, forming a six-membered ring, and with N and O in nitro groups, leaving the TNT molecules as NO, H2O, C2H3N, and C2NO3H3, and (2) the partially decomposed TNT molecules are bonded to one another via C, N, and O.

14.
Biosci Biotechnol Biochem ; 86(4): 476-489, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35090004

RESUMO

Redox homeostasis is crucial for plant acclimation to nutrient-deficient conditions, but its molecular mechanisms remain largely unknown. In this study, the effects of nutrient deficiencies on antioxidant systems in Arabidopsis thaliana were investigated. We found that ascorbate content in the plants grown with nitrogen starvation was higher than those with complete nutrition. The higher ascorbate levels were associated with enhanced gene expression of ascorbate biosynthesis enzymes and cytosolic isozymes of the ascorbate-glutathione cycle, suggesting that nitrogen starvation facilitated both consumption and biosynthesis of ascorbate. Nevertheless, we did not identify any phenotypic differences between wild type and ascorbate-deficient mutants (vtc2) under nitrogen starvation. Under high-light stress, the vtc2 mutants suffered severer photoinhibition than wild type. Interestingly, when high-light stress and nitrogen starvation were combined, wild type and vtc2 plants exhibited photoinhibition to the same extent. Based on these findings, we discuss the regulation and role of ascorbate metabolism under nitrogen starvation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo
15.
Pediatr Int ; 64(1): e14905, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34197665

RESUMO

BACKGROUND: In neonates, vancomycin (VCM) is used to treat Gram-positive bacterial infections. However, VCM blood concentrations are affected by gestational age, bodyweight (BW), and renal function. The initial VCM dose adjustment can therefore be difficult, and few reports have evaluated this issue. In this study, we investigated the factors determining the appropriate VCM dosing schedule in neonates, especially premature infants. METHODS: The VCM dosage and trough concentrations were retrospectively investigated from the initial treatment to maintenance therapy in neonatal intensive care unit patients who underwent therapeutic drug monitoring. We examined the average single-administration VCM dosage during maintenance therapy. We then compared the actual VCM dose with that calculated using an index comprising six items that influence the VCM daily dose (postnatal age, gestational age, BW, serum creatinine level, urine output, and lactate level). RESULTS: Twenty premature infants were included. The average BW of patients at the initial VCM administration was 975 g. During maintenance therapy, the average VCM dose was 8.4 mg/kg, and the median trough concentration was 12.4 µg/mL. When we applied the six-item index, 18 of 20 patients (90%) had concordant results between the actual VCM dosing schedule and the VCM calculated using the index. CONCLUSIONS: The average VCM dose and six-item index can facilitate the transition from the initial VCM dose to an appropriate dose in many cases and contribute to early treatment in low-birthweight infants with more variable BW, distribution volumes, and renal function. In conclusion, our six-item index may help standardize VCM administration in premature infants.


Assuntos
Antibacterianos , Vancomicina , Monitoramento de Medicamentos , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Estudos Retrospectivos
16.
Plant Physiol ; 183(1): 112-122, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205453

RESUMO

Plants require a high concentration of ascorbate as a redox buffer for survival under stress conditions, such as high light. Dehydroascorbate reductases (DHARs) are enzymes that catalyze the reduction of DHA to ascorbate using reduced glutathione (GSH) as an electron donor, allowing rapid ascorbate recycling. However, a recent study using an Arabidopsis (Arabidopsis thaliana) triple mutant lacking all three DHAR genes (herein called ∆dhar) did not find evidence for their role in ascorbate recycling under oxidative stress. To further study the function of DHARs, we generated ∆dhar Arabidopsis plants as well as a quadruple mutant line combining ∆dhar with an additional vtc2 mutation that causes ascorbate deficiency. Measurements of ascorbate in these mutants under low- or high-light conditions indicated that DHARs have a nonnegligible impact on full ascorbate accumulation under high light, but that they are dispensable when ascorbate concentrations are low to moderate. Because GSH itself can reduce DHA nonenzymatically, we used the pad2 mutant that contains ∼30% of the wild-type GSH level. The pad2 mutant accumulated ascorbate at a wild-type level under high light; however, when the pad2 mutation was combined with ∆dhar, there was near-complete inhibition of high-light-dependent ascorbate accumulation. The lack of ascorbate accumulation was consistent with a marked increase in the ascorbate degradation product threonate. These findings indicate that ascorbate recycling capacity is limited in ∆dhar pad2 plants, and that both DHAR activity and GSH content set a threshold for high-light-induced ascorbate accumulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética , Oxirredutases/genética
17.
EMBO Rep ; 20(11): e47957, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31524320

RESUMO

In this study, we identified a previously uncharacterized skeletal satellite cell-secreted protein, R3h domain containing-like (R3hdml). Expression of R3hdml increases during skeletal muscle development and differentiation in mice. Body weight and skeletal muscle mass of R3hdml knockout (KO) mice are lower compared to control mice. Expression levels of cell cycle-related markers, phosphorylation of Akt, and expression of insulin-like growth factor within the skeletal muscle are reduced in R3hdml KO mice compared to control mice. Expression of R3hdml increases during muscle regeneration in response to cardiotoxin (CTX)-induced muscle injury. Recovery of handgrip strength after CTX injection was significantly impaired in R3hdml KO mice, which is rescued by R3hdml. Our results indicate that R3hdml is required for skeletal muscle development, regeneration, and, in particular, satellite cell proliferation and differentiation.


Assuntos
Diferenciação Celular/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores , Proliferação de Células , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Transdução de Sinais
18.
Asia Pac J Clin Nutr ; 30(3): 424-435, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34587702

RESUMO

BACKGROUND AND OBJECTIVES: Red yeast rice contains monacolin K, an inhibitor of cholesterol synthesis, and gamma-aminobutyric acid, a neurotransmitter. The daily dose of red yeast rice and monacolin K in previous studies was relatively high; therefore, there were safety concerns. We aimed to examine the effects of low daily dose red yeast rice on arteriosclerosis in patients with mild dyslipidemia. METHODS AND STUDY DESIGN: Eighteen patients without known cardiovascular disease and unsatisfactory low-density lipoprotein cholesterol (3.96±0.19 mmol/L) controlled only by diet therapy were randomly allocated to receive low dose red yeast rice (200 mg/day) containing 2 mg monacolin K or diet therapy alone for 8 weeks. The primary outcome was the absolute change in low-density lipoprotein cholesterol. Secondary outcomes included total cholesterol, apolipoprotein B, and blood pressure. RESULTS: Low-density lipoprotein cholesterol decreased significantly in the red yeast rice group than in the diet therapy group (median [interquartile range]: control -0.20 [-0.62, 1.19] mmol/L vs. red yeast rice -0.96 [-1.05, -0.34] mmol/L, p=0.030). The red yeast rice group also exhibited significant decreases in total cholesterol, apolipoprotein B, and blood pressure. No severe treatment-related adverse effects on muscles, liver, or renal function were observed. CONCLUSIONS: We found that patients in the red yeast rice group exhibited significant reductions in lowdensity lipoprotein cholesterol, total cholesterol, apolipoprotein B, and blood pressure without any recognised adverse effect. This suggests that low daily dose red yeast rice could reduce cardiovascular risk in patients with dyslipidemia.


Assuntos
Dislipidemias , Hipercolesterolemia , Produtos Biológicos , Pressão Sanguínea , LDL-Colesterol , Suplementos Nutricionais , Dislipidemias/tratamento farmacológico , Humanos , Japão , Lovastatina
19.
Nihon Ronen Igakkai Zasshi ; 58(4): 570-578, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34880176

RESUMO

In Japan, which has become a super-aged society, medical care for the elderly is more important than ever before. Geriatric education for medical students and young doctors is essential to ensure the best medical care possible for the elderly. In this paper, the Working Group for Education of the Japan Geriatrics Society collected and analyzed data and information on undergraduate education in the fields of geriatrics and gerontology at medical schools in various countries through the Internet, comparing the findings with those in Japan. Of the countries surveyed, 62% had undergraduate education in geriatrics and gerontology as mandatory subjects in medical school. Countries with advanced welfare programs, such as the United Kingdom, Germany, Austria, Denmark, Finland, Sweden, the Netherlands, Spain, Canada and New Zealand, performed substantial undergraduate education in geriatrics and gerontology. A lack of available staff and time for education was cited as a hurdle in many countries. The importance of education in geriatrics and gerontology is being emphasized in many countries, but few programs are satisfactory at present. The "struggle" to improve undergraduate education in geriatrics and gerontology therefore continues. We should endeavor to improve education in the fields of geriatrics and gerontology by working hand in hand with geriatricians and gerontologists around the world.


Assuntos
Educação de Graduação em Medicina , Geriatria , Estudantes de Medicina , Idoso , Currículo , Geriatria/educação , Humanos , Faculdades de Medicina , Inquéritos e Questionários
20.
Cerebellum ; 18(3): 349-371, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30627965

RESUMO

We here provide neural evidence that the cerebellar circuit can predict future inputs from present outputs, a hallmark of an internal forward model. Recent computational studies hypothesize that the cerebellum performs state prediction known as a forward model. To test the forward-model hypothesis, we analyzed activities of 94 mossy fibers (inputs to the cerebellar cortex), 83 Purkinje cells (output from the cerebellar cortex to dentate nucleus), and 73 dentate nucleus cells (cerebellar output) in the cerebro-cerebellum, all recorded from a monkey performing step-tracking movements of the right wrist. We found that the firing rates of one population could be reconstructed as a weighted linear sum of those of preceding populations. We then went on to investigate if the current outputs of the cerebellum (dentate cells) could predict the future inputs of the cerebellum (mossy fibers). The firing rates of mossy fibers at time t + t1 could be well reconstructed from as a weighted sum of firing rates of dentate cells at time t, thereby proving that the dentate activities contained predictive information about the future inputs. The average goodness-of-fit (R2) decreased moderately from 0.89 to 0.86 when t1 was increased from 20 to 100 ms, hence indicating that the prediction is able to compensate the latency of sensory feedback. The linear equations derived from the firing rates resembled those of a predictor known as Kalman filter composed of prediction and filtering steps. In summary, our analysis of cerebellar activities supports the forward-model hypothesis of the cerebellum.


Assuntos
Cerebelo/fisiologia , Simulação por Computador , Modelos Neurológicos , Desempenho Psicomotor/fisiologia , Animais , Macaca , Masculino , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa