Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(5): 1033-1044, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25171405

RESUMO

Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.


Assuntos
Plaquetas/enzimologia , Embrião de Mamíferos/enzimologia , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Desenvolvimento Embrionário , Glicosilação , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Via Secretória
2.
Blood ; 143(3): 272-278, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37879046

RESUMO

ABSTRACT: Megakaryocytes (MKs) generate thousands of platelets over their lifespan. The roles of platelets in infection and inflammation has guided an interest to the study of extramedullary thrombopoiesis and therefore MKs have been increasingly reported within the spleen and lung. However, the relative abundance of MKs in these organs compared to the bone marrow and the scale of their contribution to the platelet pool in a steady state remain controversial. We investigated the relative abundance of MKs in the adult murine bone marrow, spleen, and lung using whole-mount light-sheet and quantitative histological imaging, flow cytometry, intravital imaging, and an assessment of single-cell RNA sequencing (scRNA-seq) repositories. Flow cytometry revealed significantly higher numbers of hematopoietic stem and progenitor cells and MKs in the murine bone marrow than in spleens or perfused lungs. Two-photon intravital and light-sheet microscopy, as well as quantitative histological imaging, confirmed these findings. Moreover, ex vivo cultured MKs from the bone marrow subjected to static or microfluidic platelet production assays had a higher capacity for proplatelet formation than MKs from other organs. Analysis of previously published murine and human scRNA-seq data sets revealed that only a marginal fraction of MK-like cells can be found within the lung and most likely only marginally contribute to platelet production in the steady state.


Assuntos
Medula Óssea , Trombopoese , Camundongos , Humanos , Animais , Trombopoese/genética , Plaquetas , Megacariócitos , Baço
3.
Circ Res ; 132(11): e206-e222, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37132383

RESUMO

BACKGROUND: Platelet adhesion and aggregation play a crucial role in arterial thrombosis and ischemic stroke. Here, we identify platelet ERO1α (endoplasmic reticulum oxidoreductase 1α) as a novel regulator of Ca2+ signaling and a potential pharmacological target for treating thrombotic diseases. METHODS: Intravital microscopy, animal disease models, and a wide range of cell biological studies were utilized to demonstrate the pathophysiological role of ERO1α in arteriolar and arterial thrombosis and to prove the importance of platelet ERO1α in platelet activation and aggregation. Mass spectrometry, electron microscopy, and biochemical studies were used to investigate the molecular mechanism. We used novel blocking antibodies and small-molecule inhibitors to study whether ERO1α can be targeted to attenuate thrombotic conditions. RESULTS: Megakaryocyte-specific or global deletion of Ero1α in mice similarly reduced platelet thrombus formation in arteriolar and arterial thrombosis without affecting tail bleeding times and blood loss following vascular injury. We observed that platelet ERO1α localized exclusively in the dense tubular system and promoted Ca2+ mobilization, platelet activation, and aggregation. Platelet ERO1α directly interacted with STIM1 (stromal interaction molecule 1) and SERCA2 (sarco/endoplasmic reticulum Ca2+-ATPase 2) and regulated their functions. Such interactions were impaired in mutant STIM1-Cys49/56Ser and mutant SERCA2-Cys875/887Ser. We found that ERO1α modified an allosteric Cys49-Cys56 disulfide bond in STIM1 and a Cys875-Cys887 disulfide bond in SERCA2, contributing to Ca2+ store content and increasing cytosolic Ca2+ levels during platelet activation. Inhibition of Ero1α with small-molecule inhibitors but not blocking antibodies attenuated arteriolar and arterial thrombosis and reduced infarct volume following focal brain ischemia in mice. CONCLUSIONS: Our results suggest that ERO1α acts as a thiol oxidase for Ca2+ signaling molecules, STIM1 and SERCA2, and enhances cytosolic Ca2+ levels, promoting platelet activation and aggregation. Our study provides evidence that ERO1α may be a potential target to reduce thrombotic events.


Assuntos
AVC Isquêmico , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Sinalização do Cálcio , Dissulfetos , AVC Isquêmico/metabolismo , Ativação Plaquetária
4.
Blood ; 139(22): 3245-3254, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582554

RESUMO

Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor ß1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.


Assuntos
Megacariócitos , Trombopoese , Plaquetas/metabolismo , Medula Óssea , Células-Tronco Hematopoéticas , Megacariócitos/metabolismo , Trombopoese/genética
5.
Blood ; 139(1): 104-117, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34329392

RESUMO

Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária , Proteínas Tirosina Quinases/metabolismo , Trombose/metabolismo , Animais , Plaquetas/patologia , Deleção de Genes , Células HEK293 , Humanos , Camundongos Transgênicos , Proteínas Tirosina Quinases/genética , Trombose/patologia
6.
Haematologica ; 109(3): 915-928, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675512

RESUMO

Megakaryocytes (MK) undergo extensive cytoskeletal rearrangements as they give rise to platelets. While cortical microtubule sliding has been implicated in proplatelet formation, the role of the actin cytoskeleton in proplatelet elongation is less understood. It is assumed that actin filament reorganization is important for platelet generation given that mouse models with mutations in actin-associated proteins exhibit thrombocytopenia. However, due to the essential role of the actin network during MK development, a differential understanding of the contribution of the actin cytoskeleton on proplatelet release is lacking. Here, we reveal that inhibition of actin polymerization impairs the formation of elaborate proplatelets by hampering proplatelet extension and bead formation along the proplatelet shaft, which was mostly independent of changes in cortical microtubule sliding. We identify Cdc42 and its downstream effectors, septins, as critical regulators of intracellular actin dynamics in MK, inhibition of which, similarly to inhibition of actin polymerization, impairs proplatelet movement and beading. Super-resolution microscopy revealed a differential association of distinctive septins with the actin and microtubule cytoskeleton, respectively, which was disrupted upon septin inhibition and diminished intracellular filamentous actin dynamics. In vivo, septins, similarly to F-actin, were subject to changes in expression upon enforcing proplatelet formation through prior platelet depletion. In summary, we demonstrate that a Cdc42/septin axis is not only important for MK maturation and polarization, but is further required for intracellular actin dynamics during proplatelet formation.


Assuntos
Actinas , Megacariócitos , Animais , Camundongos , Septinas , Plaquetas , Citoesqueleto de Actina
7.
Clin Chem Lab Med ; 62(5): 999-1010, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38037809

RESUMO

OBJECTIVES: Sepsis is a life-threatening condition implicating an inadequate activation of the immune system. Platelets act as modulators and contributors to immune processes. Indeed, altered platelet turnover, thrombotic events, and changes in thrombopoietin levels in systemic inflammation have been reported, but thrombopoietin-levels in sepsis and septic-shock have not yet been systematically evaluated. We therefore performed a meta-analysis of thrombopoietin (TPO)-levels in patients with sepsis. METHODS: Two independent reviewers screened records and full-text articles for inclusion. Scientific databases were searched for studies examining thrombopoietin levels in adult sepsis and septic-shock patients until August 1st 2022. RESULTS: Of 95 items screened, six studies met the inclusion criteria, including 598 subjects. Both sepsis and severe sepsis were associated with increased levels of thrombopoietin (sepsis vs. control: standardized mean difference 3.06, 95 % CI 1.35-4.77; Z=3.50, p=0.0005) (sepsis vs. severe sepsis: standardized mean difference -1.67, 95 % CI -2.46 to -0.88; Z=4.14, p<0.0001). TPO-levels did not show significant differences between severe sepsis and septic shock patients but differed between sepsis and inflammation-associated non-septic controls. Overall, high heterogeneity and low sample size could be noted. CONCLUSIONS: Concluding, increased levels of thrombopoietin appear to be present both in sepsis and severe sepsis with high heterogeneity but thrombopoietin does not allow to differentiate between severe sepsis and septic-shock. TPO may potentially serve to differentiate sepsis from non-septic trauma and/or tissue damage related (systemic) inflammation. Usage of different assays and high heterogeneity demand standardization of methods and further large multicenter trials.


Assuntos
Sepse , Choque Séptico , Adulto , Humanos , Trombopoetina
8.
J Thromb Thrombolysis ; 56(3): 398-410, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37432612

RESUMO

Cardiovascular therapeutic devices (CTDs) remain limited by thrombotic adverse events. Current antithrombotic agents limit thrombosis partially, often adding to bleeding. The Impella® blood pump utilizes heparin in 5% dextrose (D5W) as an internal purge to limit thrombosis. While effective, exogenous heparin often complicates overall anticoagulation management, increasing bleeding tendency. Recent clinical studies suggest sodium bicarbonate (bicarb) may be an effective alternative to heparin for local anti-thrombosis. We examined the effect of sodium bicarbonate on human platelet morphology and function to better understand its translational utility. Human platelets were incubated (60:40) with D5W + 25 mEq/L, 50 mEq/L, or 100 mEq/L sodium bicarbonate versus D5W or D5W + Heparin 50 U/mL as controls. pH of platelet-bicarbonate solutions mixtures was measured. Platelet morphology was examined via transmission electron microscopy; activation assessed via P-selectin expression, phosphatidylserine exposure and thrombin generation; and aggregation with TRAP-6, calcium ionophore, ADP and collagen quantified; adhesion to glass measured via fluorescence microscopy. Sodium bicarbonate did not alter platelet morphology but did significantly inhibit activation, aggregation, and adhesion. Phosphatidylserine exposure and thrombin generation were both reduced in a concentration-dependent manner-between 26.6 ± 8.2% (p = 0.01) and 70.7 ± 5.6% (p < 0.0001); and 14.0 ± 6.2% (p = 0.15) and 41.7 ± 6.8% (p = 0.03), respectively, compared to D5W control. Platelet aggregation via all agonists was also reduced, particularly at higher concentrations of bicarb. Platelet adhesion to glass was similarly reduced, between 0.04 ± 0.03% (p = 0.61) and 0.11 ± 0.04% (p = 0.05). Sodium bicarbonate has direct, local, dose-dependent effects limiting platelet activation and adhesion. Our results highlight the potential utility of sodium bicarbonate as a locally acting agent to limit device thrombosis.


Assuntos
Bicarbonato de Sódio , Trombose , Humanos , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/metabolismo , Trombina/metabolismo , Fosfatidilserinas/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Plaquetas , Heparina/farmacologia , Trombose/tratamento farmacológico , Trombose/prevenção & controle
9.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108551

RESUMO

Implantable Cardiovascular Therapeutic Devices (CTD), while lifesaving, impart supraphysiologic shear stress to platelets, resulting in thrombotic and bleeding coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbß3 receptors via generation of Platelet-Derived MicroParticles (PDMPs). Here, we test the hypothesis that sheared PDMPs manifest phenotypical heterogeneity of morphology and receptor surface expression and modulate platelet hemostatic function. Human gel-filtered platelets were exposed to continuous shear stress. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation was measured by optical aggregometry. Shear stress promotes notable alterations in platelet morphology and ejection of distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the remodeling of platelet receptors, with PDMPs expressing significantly higher levels of adhesion receptors (αIIbß3, GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist receptors (P2Y12 and PAR1). Sheared PDMPs promote thrombin generation and inhibit platelet aggregation induced by collagen and ADP. Sheared PDMPs demonstrate phenotypic heterogeneity as to morphology and defined patterns of surface receptors and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.


Assuntos
Micropartículas Derivadas de Células , Hemostáticos , Humanos , Trombina/metabolismo , Micropartículas Derivadas de Células/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Hemostáticos/metabolismo , Ativação Plaquetária , Estresse Mecânico
10.
Bioconjug Chem ; 33(7): 1295-1310, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35731951

RESUMO

Objective. Platelets are small, mechanosensitive blood cells responsible for maintaining vascular integrity and activatable on demand to limit bleeding and facilitate thrombosis. While circulating in the blood, platelets are exposed to a range of mechanical and chemical stimuli, with the platelet membrane being the primary interface and transducer of outside-in signaling. Sensing and modulating these interface signals would be useful to study mechanochemical interactions; yet, to date, no methods have been defined to attach adducts for sensor fabrication to platelets without triggering platelet activation. We hypothesized that DNA origami, and methods for its attachment, could be optimized to enable nonactivating instrumentation of the platelet membrane. Approach and Results. We designed and fabricated multivalent DNA origami nanotile constructs to investigate nanotile hybridization to membrane-embedded single-stranded DNA-tetraethylene glycol cholesteryl linkers. Two hybridization protocols were developed and validated (Methods I and II) for rendering high-density binding of DNA origami nanotiles to human platelets. Using quantitative flow cytometry, we showed that DNA origami binding efficacy was significantly improved when the number of binding overhangs was increased from two to six. However, no additional binding benefit was observed when increasing the number of nanotile overhangs further to 12. Using flow cytometry and transmission electron microscopy, we verified that hybridization with DNA origami constructs did not cause alterations in the platelet morphology, activation, aggregation, or generation of platelet-derived microparticles. Conclusions. Herein, we demonstrate that platelets can be successfully instrumented with DNA origami constructs with no or minimal effect on the platelet morphology and function. Our protocol allows for efficient high-density binding of DNA origami to platelets using low quantities of the DNA material to label a large number of platelets in a timely manner. Nonactivating platelet-nanotile adducts afford a path for advancing the development of DNA origami nanoconstructs for cell-adherent mechanosensing and therapeutic agent delivery.


Assuntos
Micropartículas Derivadas de Células , Plaquetas , DNA/metabolismo , Adutos de DNA , Humanos , Ativação Plaquetária
11.
Blood ; 136(24): 2824-2837, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32614949

RESUMO

von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized in endothelial cells and stored in Weibel-Palade bodies (WPBs). Understanding the mechanisms underlying WPB biogenesis and exocytosis could enable therapeutic modulation of endogenous VWF, yet optimal targets for modulating VWF release have not been established. Because biogenesis of lysosomal related organelle-2 (BLOC-2) functions in the biogenesis of platelet dense granules and melanosomes, which like WPBs are lysosome-related organelles, we hypothesized that BLOC-2-dependent endolysosomal trafficking is essential for WPB biogenesis and sought to identify BLOC-2-interacting proteins. Depletion of BLOC-2 caused misdirection of cargo-carrying transport tubules from endosomes, resulting in immature WPBs that lack endosomal input. Immunoprecipitation of BLOC-2 identified the exocyst complex as a binding partner. Depletion of the exocyst complex phenocopied BLOC-2 depletion, resulting in immature WPBs. Furthermore, releasates of immature WPBs from either BLOC-2 or exocyst-depleted endothelial cells lacked high-molecular weight (HMW) forms of VWF, demonstrating the importance of BLOC-2/exocyst-mediated endosomal input during VWF maturation. However, BLOC-2 and exocyst showed very different effects on VWF release. Although BLOC-2 depletion impaired exocytosis, exocyst depletion augmented WPB exocytosis, indicating that it acts as a clamp. Exposure of endothelial cells to a small molecule inhibitor of exocyst, Endosidin2, reversibly augmented secretion of mature WPBs containing HMW forms of VWF. These studies show that, although BLOC-2 and exocyst cooperate in WPB formation, only exocyst serves to clamp WPB release. Exocyst function in VWF maturation and release are separable, a feature that can be exploited to enhance VWF release.


Assuntos
Exocitose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Limoninas/farmacologia
12.
Haematologica ; 107(2): 519-531, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33567808

RESUMO

Antisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2'MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count. Phenotype 2 is rare, severe thrombocytopenia. This article focuses on the underlying cause of the more common phenotype 1, investigating the effects of ASO on platelet production and platelet function. Five phosphorothioate ASO were studied: three 2'MOE sequences; 487660 (no effects on platelet count), 104838 (associated with phenotype 1), and 501861 (effects unknown) and two CpG sequences; 120704 and ODN 2395 (known to activate platelets). Human cord bloodderived megakaryocytes were treated with these ASO to study their effects on proplatelet production. Platelet activation (determined by surface Pselectin) and platelet-leukocyte aggregates were analyzed in ASO-treated blood from healthy human volunteers. None of the ASO inhibited proplatelet production by human megakaryocytes. All the ASO were shown to bind to the platelet receptor glycoprotein VI (KD ~0.2-1.5 mM). CpG ASO had the highest affinity to glycoprotein VI, the most potent platelet-activating effects and led to the greatest formation of platelet-leukocyte aggregates. 2'MOE ASO 487660 had no detectable platelet effects, while 2'MOE ASOs 104838 and 501861 triggered moderate platelet activation and SYKdependent formation of platelet-leukocyte aggregates. Donors with higher platelet glycoprotein VI levels had greater ASO-induced platelet activation. Sequence-dependent ASO-induced platelet activation and platelet-leukocyte aggregates may explain phenotype 1 (moderate drops in platelet count). Platelet glycoprotein VI levels could be useful as a screening tool to identify patients at higher risk of ASO-induced platelet side effects.


Assuntos
Plaquetas , Oligonucleotídeos Antissenso , Humanos , Leucócitos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Ativação Plaquetária , Contagem de Plaquetas
14.
Proc Natl Acad Sci U S A ; 115(7): E1550-E1559, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386381

RESUMO

There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbß3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.


Assuntos
Anafilaxia/imunologia , Complexo Antígeno-Anticorpo/imunologia , Plaquetas/imunologia , Serotonina/imunologia , Choque Séptico/imunologia , Adulto , Anafilaxia/sangue , Anafilaxia/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária , Contagem de Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Choque Séptico/sangue , Choque Séptico/genética , Adulto Jovem
15.
Blood ; 139(14): 2100-2101, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389441

Assuntos
Plaquetas , Ticlopidina
16.
Blood ; 129(2): 209-225, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27903531

RESUMO

Downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, is known to modulate pain responses. However, it is unknown whether DREAM is expressed in anucleate platelets and plays a role in thrombogenesis. By using intravital microscopy with DREAM-null mice and their bone marrow chimeras, we demonstrated that both hematopoietic and nonhematopoietic cell DREAMs are required for platelet thrombus formation following laser-induced arteriolar injury. In a FeCl3-induced thrombosis model, we found that compared with wild-type (WT) control and nonhematopoietic DREAM knockout (KO) mice, DREAM KO control and hematopoietic DREAM KO mice showed a significant delay in time to occlusion. Tail bleeding time was prolonged in DREAM KO control mice, but not in WT or DREAM bone marrow chimeric mice. In vivo adoptive transfer experiments further indicated the importance of platelet DREAM in thrombogenesis. We found that DREAM deletion does not alter the ultrastructural features of platelets but significantly impairs platelet aggregation and adenosine triphosphate secretion induced by numerous agonists (collagen-related peptide, adenosine 5'-diphosphate, A23187, thrombin, or U46619). Biochemical studies revealed that platelet DREAM positively regulates phosphoinositide 3-kinase (PI3K) activity during platelet activation. Using DREAM-null platelets and PI3K isoform-specific inhibitors, we observed that platelet DREAM is important for α-granule secretion, Ca2+ mobilization, and aggregation through PI3K class Iß (PI3K-Iß). Genetic and pharmacological studies in human megakaryoblastic MEG-01 cells showed that DREAM is important for A23187-induced Ca2+ mobilization and its regulatory function requires Ca2+ binding and PI3K-Iß activation. These results suggest that platelet DREAM regulates PI3K-Iß activity and plays an important role during thrombus formation.


Assuntos
Proteínas Interatuantes com Canais de Kv/metabolismo , Ativação Plaquetária/fisiologia , Proteínas Repressoras/metabolismo , Trombose/metabolismo , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Transdução de Sinais/fisiologia
17.
Blood ; 130(9): 1132-1143, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28630120

RESUMO

Selinexor is the first oral selective inhibitor of nuclear export compound tested for cancer treatment. Selinexor has demonstrated a safety therapy profile with broad antitumor activity against solid and hematological malignancies in phases 2 and 3 clinical trials (#NCT03071276, #NCT02343042, #NCT02227251, #NCT03110562, and #NCT02606461). Although selinexor shows promising efficacy, its primary adverse effect is high-grade thrombocytopenia. Therefore, we aimed to identify the mechanism of selinexor-induced thrombocytopenia to relieve it and improve its clinical management. We determined that selinexor causes thrombocytopenia by blocking thrombopoietin (TPO) signaling and therefore differentiation of stem cells into megakaryocytes. We then used both in vitro and in vivo models and patient samples to show that selinexor-induced thrombocytopenia is indeed reversible when TPO agonists are administered in the absence of selinexor (drug holiday). In sum, these data reveal (1) the mechanism of selinexor-induced thrombocytopenia, (2) an effective way to reverse the dose-limiting thrombocytopenia, and (3) a novel role for XPO1 in megakaryopoiesis. The improved selinexor dosing regimen described herein is crucial to help reduce thrombocytopenia in selinexor patients, allowing them to continue their course of chemotherapy and have the best chance of survival. This trial was registered at www.clinicaltrials.gov as #NCT01607905.


Assuntos
Hidrazinas/efeitos adversos , Megacariócitos/metabolismo , Megacariócitos/patologia , Transdução de Sinais/efeitos dos fármacos , Trombocitopenia/induzido quimicamente , Trombocitopenia/metabolismo , Trombopoese/efeitos dos fármacos , Trombopoetina/metabolismo , Triazóis/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feto/patologia , Fígado/embriologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/ultraestrutura , Camundongos Knockout , Ativação Plaquetária/efeitos dos fármacos , Células-Tronco/citologia , Trombocitopenia/sangue
19.
Haematologica ; 104(10): 2075-2083, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30733267

RESUMO

Apoptosis is a recognized limitation to generating large numbers of megakaryocytes in culture. The genes responsible have been rigorously studied in vivo in mice, but are poorly characterized in human culture systems. As CD34-positive (+) cells isolated from human umbilical vein cord blood were differentiated into megakaryocytes in culture, two distinct cell populations were identified by flow cytometric forward and side scatter: larger size, lower granularity (LLG), and smaller size, higher granularity (SHG). The LLG cells were CD41aHigh CD42aHigh phosphatidylserineLow, had an electron microscopic morphology similar to mature bone marrow megakaryocytes, developed proplatelets, and displayed a signaling response to platelet agonists. The SHG cells were CD41aLowCD42aLowphosphatidylserineHigh, had a distinctly apoptotic morphology, were unable to develop proplatelets, and showed no signaling response. Screens of differentiating megakaryocytes for expression of 24 apoptosis genes identified BCL2L2 as a novel candidate megakaryocyte apoptosis regulator. Lentiviral BCL2L2 overexpression decreased megakaryocyte apoptosis, increased CD41a+ LLG cells, and increased proplatelet formation by 58%. An association study in 154 healthy donors identified a significant positive correlation between platelet number and platelet BCL2L2 mRNA levels. This finding was consistent with the observed increase in platelet-like particles derived from cultured megakaryocytes over-expressing BCL2L2 BCL2L2 also induced small, but significant increases in thrombin-induced platelet-like particle αIIbß3 activation and P-selectin expression. Thus, BCL2L2 restrains apoptosis in cultured megakaryocytes, promotes proplatelet formation, and is associated with platelet number. BCL2L2 is a novel target for improving megakaryocyte and platelet yields in in vitro culture systems.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Sangue Fetal , Megacariócitos , Antígenos de Diferenciação/biossíntese , Células Cultivadas , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa