Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798565

RESUMO

Cancer-associated fibroblast (CAF) subpopulations in pancreatic ductal adenocarcinoma (PDAC) have been identified using single-cell RNA sequencing (scRNAseq) with divergent characteristics, but their clinical relevance remains unclear. We translate scRNAseq-derived CAF cell-subpopulation-specific marker genes to bulk RNAseq data, and develop a single- sample classifier, DeCAF, for the classification of clinically rest raining and perm issive CAF subtypes. We validate DeCAF in 19 independent bulk transcriptomic datasets across four tumor types (PDAC, mesothelioma, bladder and renal cell carcinoma). DeCAF subtypes have distinct histology features, immune landscapes, and are prognostic and predict response to therapy across cancer types. We demonstrate that DeCAF is clinically replicable and robust for the classification of CAF subtypes in patients for multiple tumor types, providing a better framework for the future development and translation of therapies against permissive CAF subtypes and preservation of restraining CAF subtypes. Significance: We introduce a replicable and robust classifier, DeCAF, that delineates the significance of the role of permissive and restraining CAF subtypes in cancer patients. DeCAF is clinically tractable, prognostic and predictive of treatment response in multiple cancer types and lays the translational groundwork for the preclinical and clinical development of CAF subtype specific therapies.

2.
J Exp Med ; 221(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091025

RESUMO

The site of transition between tissue-resident memory (TRM) and circulating phenotypes of T cells is unknown. We integrated clonotype, alloreactivity, and gene expression profiles of graft-repopulating recipient T cells in the intestinal mucosa at the single-cell level after human intestinal transplantation. Host-versus-graft (HvG)-reactive T cells were mainly distributed to TRM, effector T (Teff)/TRM, and T follicular helper compartments. RNA velocity analysis demonstrated a trajectory from TRM to Teff/TRM clusters in association with rejection. By integrating pre- and post-transplantation (Tx) mixed lymphocyte reaction-determined alloreactive repertoires, we observed that pre-existing HvG-reactive T cells that demonstrated tolerance in the circulation were dominated by TRM profiles in quiescent allografts. Putative de novo HvG-reactive clones showed a transcriptional profile skewed to cytotoxic effectors in rejecting grafts. Inferred protein regulon network analysis revealed upstream regulators that accounted for the effector and tolerant T cell states. We demonstrate Teff/TRM interchangeability for individual T cell clones with known (allo)recognition in the human gut, providing novel insight into TRM biology.


Assuntos
Tolerância Imunológica , Linfócitos T , Humanos , Transplante Homólogo , Células Clonais , Memória Imunológica
3.
Front Immunol ; 15: 1375486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007142

RESUMO

Introduction: It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods: Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results: We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion: Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.


Assuntos
Mucosa Intestinal , Receptores de Antígenos de Linfócitos B , Humanos , Criança , Pré-Escolar , Adolescente , Lactente , Mucosa Intestinal/imunologia , Masculino , Feminino , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Adulto , Linfócitos B/imunologia , Adulto Jovem , Intestinos/imunologia , Intestinos/transplante , Transplante de Órgãos , Rejeição de Enxerto/imunologia
4.
bioRxiv ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38234792

RESUMO

Purpose: The CXCL12-CXCR4 chemokine axis plays a significant role in modulating T-cell infiltration into the pancreatic tumor microenvironment. Despite promising preclinical findings, clinical trials combining inhibitors of CXCR4 (AMD3100/BL-8040) and anti-programmed death 1/ligand1 (anti-PD1/PD-L1) have failed to improve outcomes. Experimental Design: We utilized a novel ex vivo autologous patient-derived immune/organoid (PDIO) co-culture system using human peripheral blood mononuclear cells and patient derived tumor organoids, and in vivo the autochthonous LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) pancreatic cancer mouse model to interrogate the effects of either monotherapy or all combinations of gemcitabine, AMD3100, and anit-PD1 on CD8+ T cell activation and survival. Results: We demonstrate that disruption of the CXCL12-CXCR4 axis using AMD3100 leads to increased migration and activation of CD8+ T-cells. In addition, when combined with the cytotoxic chemotherapy gemcitabine, CXCR4 inhibition further potentiated CD8+ T-cell activation. We next tested the combination of gemcitabine, CXCR4 inhibition, and anti-PD1 in the KPC pancreatic cancer mouse model and demonstrate that this combination markedly impacted the tumor immune microenvironment by increasing infiltration of natural killer cells, the ratio of CD8+ to regulatory T-cells, and tumor cell death while decreasing tumor cell proliferation. Moreover, this combination extended survival in KPC mice. Conclusions: These findings suggest that combining gemcitabine with CXCR4 inhibiting agents and anti-PD1 therapy controls tumor growth by reducing immunosuppression and potentiating immune cell activation and therefore may represent a novel approach to treating pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa