Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ecol Lett ; 12(8): 758-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19500130

RESUMO

The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.


Assuntos
Adaptação Fisiológica/fisiologia , Corydalis/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Neve , Marcação por Isótopo , Isótopos de Nitrogênio/metabolismo , Raízes de Plantas/anatomia & histologia , Federação Russa
2.
New Phytol ; 183(1): 106-116, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19368671

RESUMO

* The mechanisms of enhanced root to shoot metal transport in heavy metal hyperaccumulators are incompletely understood. Here, we compared the distribution of nickel (Ni) over root segments and tissues in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi arvense, and investigated the role of free histidine in Ni xylem loading and Ni transport across the tonoplast. * Nickel accumulation in mature cortical root cells was apparent in T. arvense and in a high-Ni-accumulating T. caerulescens accession, but not in a low-accumulating T. caerulescens accession. * Compared with T. arvense, the concentration of free histidine in T. caerulescens was 10-fold enhanced in roots, but was only slightly higher in leaves, regardless of Ni exposure. Nickel uptake in MgATP-energized root- and shoot-derived tonoplast vesicles was almost completely blocked in T. caerulescens when Ni was supplied as a 1 : 1 Ni-histidine complex, but was uninhibited in T. arvense. Exogenous histidine supply enhanced Ni xylem loading in T. caerulescens but not in T. arvense. * The high rate of root to shoot translocation of Ni in T. caerulescens compared with T. arvense seems to depend on the combination of two distinct characters, that is, a greatly enhanced root histidine concentration and a strongly decreased ability to accumulate histidine-bound Ni in root cell vacuoles.


Assuntos
Adaptação Biológica/fisiologia , Histidina/metabolismo , Transporte de Íons/fisiologia , Níquel/metabolismo , Raízes de Plantas/metabolismo , Thlaspi/metabolismo , Vacúolos/metabolismo , Níquel/toxicidade , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Thlaspi/efeitos dos fármacos , Xilema/fisiologia
3.
J Plant Growth Regul ; 21(1): 60-67, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11997812

RESUMO

Roots have long been realized to be useful material for studies of cell division. Despite this long history of use, the behavior of cells in the meristem is often misinterpreted. A common error is to argue that differences in cell length reflect differences in cell division rate. In this article we explain the fallacy behind this argument and show how the analysis of cell length distribution can lead to insight about the root meristem. These observations support a model for the root meristem where cells of various tissues grow at the same relative growth rate and divide at the same frequency, indicating that these growth parameters are built into the cells at a fundamental level. The differences in cell length between various tissues appear to arise at their formation, first at the tissue initials and ultimately in the seed. Length differences among mature cells may be enhanced by differences in the location within the meristem where division ceases. Discovering mechanisms regulating the length of initial cells and the position where cells cease division requires a realistic understanding of how growth constrains the division behavior of dividing cells.

4.
Plant Physiol ; 132(3): 1138-48, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857796

RESUMO

A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution. The software implements an image processing algorithm using a novel combination of optical flow methods for deformable motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates components of motion parallel and perpendicular to the local tangent of the root's midline. A variation of the software has been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato (Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for RootflowRT is available from the corresponding author on request.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Meristema/crescimento & desenvolvimento , Movimento , Magnoliopsida/crescimento & desenvolvimento , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa