Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS Pathog ; 19(12): e1011844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060615

RESUMO

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS)-known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Acute infection led to marked imbalance in the CNS CD4/CD8 ratio which persisted into the chronic phase. These observations underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our findings offer insights for potential T cell-focused interventions while underscoring the challenges in eradicating HIV from the CNS, particularly in the context of sub-optimal ART.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Linfócitos T CD4-Positivos , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Sistema Nervoso Central , Carga Viral
2.
PLoS Pathog ; 18(4): e1009925, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35443018

RESUMO

Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , Macaca mulatta , RNA Viral , Soroterapia para COVID-19
3.
PLoS Pathog ; 17(7): e1009688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228761

RESUMO

There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Pulmão/patologia , SARS-CoV-2/imunologia , Replicação Viral , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Pulmão/diagnóstico por imagem , Macaca mulatta , Masculino , Análise Multivariada , Radiografia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Fatores de Tempo , Resultado do Tratamento , Replicação Viral/imunologia
4.
J Neuroinflammation ; 19(1): 250, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203187

RESUMO

BACKGROUND: Immunosurveillance of the central nervous system (CNS) is vital to resolve infection and injury. However, immune activation within the CNS in the setting of chronic viral infections, such as HIV-1, is strongly linked to progressive neurodegeneration and cognitive decline. Establishment of HIV-1 in the CNS early following infection underscores the need to delineate features of acute CNS immune activation, as these early inflammatory events may mediate neurodegenerative processes. Here, we focused on elucidating molecular programs of neuroinflammation in brain regions based on vulnerability to neuroAIDS and/or neurocognitive decline. To this end, we assessed transcriptional profiles within the subcortical white matter of the pre-frontal cortex (PFCw), as well as synapse dense regions from hippocampus, superior temporal cortex, and caudate nucleus, in rhesus macaques following infection with Simian/Human Immunodeficiency Virus (SHIV.C.CH505). METHODS: We performed RNA extraction and sequenced RNA isolated from 3 mm brain punches. Viral RNA was quantified in the brain and cerebrospinal fluid by RT-qPCR assays targeting SIV Gag. Neuroinflammation was assessed by flow cytometry and multiplex ELISA assays. RESULTS: RNA sequencing and flow cytometry data demonstrated immune surveillance of the rhesus CNS by innate and adaptive immune cells during homeostasis. Following SHIV infection, viral entry and integration within multiple brain regions demonstrated vulnerabilities of key cognitive and motor function brain regions to HIV-1 during the acute phase of infection. SHIV-induced transcriptional alterations were concentrated to the PFCw and STS with upregulation of gene expression pathways controlling innate and T-cell inflammatory responses. Within the PFCw, gene modules regulating microglial activation and T cell differentiation were induced at 28 days post-SHIV infection, with evidence for stimulation of immune effector programs characteristic of neuroinflammation. Furthermore, enrichment of pathways regulating mitochondrial respiratory capacity, synapse assembly, and oxidative and endoplasmic reticulum stress were observed. These acute neuroinflammatory features were substantiated by increased influx of activated T cells into the CNS. CONCLUSIONS: Our data show pervasive immune surveillance of the rhesus CNS at homeostasis and reveal perturbations of important immune, neuronal, and synaptic pathways within key anatomic regions controlling cognition and motor function during acute HIV infection. These findings provide a valuable framework to understand early molecular features of HIV associated neurodegeneration.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Substância Branca , Animais , Lobo Frontal , HIV-1/genética , Humanos , Macaca mulatta/genética , RNA Viral , Carga Viral
5.
Immunity ; 38(4): 805-17, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23583644

RESUMO

CD4(+) T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for long-lived antibody responses. However, it remains unclear whether there are CD4(+) memory T cells committed to the Tfh cell lineage after antigen clearance. By using adoptive transfer of antigen-specific memory CD4(+) T cell subpopulations in the lymphocytic choriomeningitis virus infection model, we found that there are distinct memory CD4(+) T cell populations with commitment to either Tfh- or Th1-cell lineages. Our conclusions are based on gene expression profiles, epigenetic studies, and phenotypic and functional analyses. Our findings indicate that CD4(+) memory T cells "remember" their previous effector lineage after antigen clearance, being poised to reacquire their lineage-specific effector functions upon antigen reencounter. These findings have important implications for rational vaccine design, where improving the generation and engagement of memory Tfh cells could be used to enhance vaccine-induced protective immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Transferência Adotiva , Animais , Antígenos Virais/imunologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Metilação de DNA/imunologia , Epigênese Genética/imunologia , Granzimas/genética , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CXCR5/metabolismo , Transcriptoma
6.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31827000

RESUMO

Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS/farmacologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Secundária , Imunoglobulina G/imunologia , Células Th1/imunologia , Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Feminino , Centro Germinativo/imunologia , Centro Germinativo/patologia , Humanos , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Macaca mulatta , Saponinas/farmacologia , Células Th1/patologia
7.
J Hepatol ; 73(5): 1013-1022, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32540177

RESUMO

BACKGROUND & AIMS: The heterodimeric integrin receptor α4ß7 regulates CD4 T cell recruitment to inflamed tissues, but its role in the pathogenesis of non-alcoholic steatohepatitis (NASH) is unknown. Herein, we examined the role of α4ß7-mediated recruitment of CD4 T cells to the intestine and liver in NASH. METHODS: Male littermate F11r+/+ (control) and junctional adhesion molecule A knockout F11r-/- mice were fed a normal diet or a western diet (WD) for 8 weeks. Liver and intestinal tissues were analyzed by histology, quantitative reverse transcription PCR (qRT-PCR), 16s rRNA sequencing and flow cytometry. Colonic mucosa-associated microbiota were analyzed using 16s rRNA sequencing. Liver biopsies from patients with NASH were analyzed by confocal imaging and qRT-PCR. RESULTS: WD-fed knockout mice developed NASH and had increased hepatic and intestinal α4ß7+ CD4 T cells relative to control mice who developed mild hepatic steatosis. The increase in α4ß7+ CD4 T cells was associated with markedly higher expression of the α4ß7 ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) in the colonic mucosa and livers of WD-fed knockout mice. Elevated MAdCAM-1 expression correlated with increased mucosa-associated Proteobacteria in the WD-fed knockout mice. Antibiotics reduced MAdCAM-1 expression indicating that the diet-altered microbiota promoted colonic and hepatic MAdCAM-1 expression. α4ß7 blockade in WD-fed knockout mice significantly decreased α4ß7+ CD4 T cell recruitment to the intestine and liver, attenuated hepatic inflammation and fibrosis, and improved metabolic indices. MAdCAM-1 blockade also reduced hepatic inflammation and fibrosis in WD-fed knockout mice. Hepatic MAdCAM-1 expression was elevated in patients with NASH and correlated with higher expression of α4 and ß7 integrins. CONCLUSIONS: These findings establish α4ß7/MAdCAM-1 as a critical axis regulating NASH development through colonic and hepatic CD4 T cell recruitment. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is an advanced and progressive form of non-alcoholic fatty liver disease (NAFLD), and despite its growing incidence no therapies currently exist to halt NAFLD progression. Herein, we show that blocking integrin receptor α4ß7-mediated recruitment of CD4 T cells to the intestine and liver not only attenuates hepatic inflammation and fibrosis, but also improves metabolic derangements associated with NASH. These findings provide evidence for the potential therapeutic application of α4ß7 antibody in the treatment of human NASH.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Dieta Ocidental/efeitos adversos , Integrinas/metabolismo , Mucosa Intestinal/imunologia , Fígado/imunologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Humanos , Integrinas/antagonistas & inibidores , Integrinas/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Mucoproteínas/antagonistas & inibidores , Mucoproteínas/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Ribossômico 16S/genética , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética
8.
J Med Primatol ; 49(6): 322-331, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621339

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 and the ensuing COVID-19 pandemic prompted the need for a surveillance program to determine the viral status of the California National Primate Research Center non-human primate breeding colony, both for reasons of maintaining colony health and minimizing the risk of interference in COVID-19 and other research studies. METHODS: We collected biological samples from 10% of the rhesus macaque population for systematic testing to detect SARS-CoV-2 virus by RT-PCR and host antibody response by ELISA. Testing required the development and validation of new assays and an algorithm using in laboratory-developed and commercially available reagents and protocols. RESULTS AND CONCLUSIONS: No SARS-CoV-2 RNA or antibody was detected in this study; therefore, we have proposed a modified testing algorithm for sentinel surveillance to monitor for any future transmissions. As additional reagents and controls become available, assay development and validation will continue, leading to the enhanced sensitivity, specificity, accuracy, and efficiency of testing.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/veterinária , Macaca mulatta/virologia , Doenças dos Macacos/virologia , Pandemias/veterinária , Pneumonia Viral/veterinária , Animais , Anticorpos Antivirais/sangue , Betacoronavirus/genética , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/virologia , Fezes/virologia , Humanos , Pneumonia Viral/virologia , RNA Viral/isolamento & purificação , SARS-CoV-2 , Vigilância de Evento Sentinela/veterinária
9.
J Med Primatol ; 48(1): 54-57, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277264

RESUMO

Cervicovaginal bacteria cause inflammation which in turn increases HIV risk. Profiling the cervicovaginal microbiome, therefore, is instrumental for vaccine development. We show that the microbiome profile captured by cervicovaginal lavage is comparable to samples obtained by vaginal swabs. Thus, lavage may serve as a sampling strategy in NHP vaccine studies.


Assuntos
Bactérias/isolamento & purificação , Colo do Útero/microbiologia , Macaca mulatta/microbiologia , Microbiota , Manejo de Espécimes/veterinária , Vagina/microbiologia , Animais , Feminino , Manejo de Espécimes/métodos
10.
J Immunol ; 197(5): 1832-42, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27481845

RESUMO

Chronic HIV infection is associated with accumulation of germinal center (GC) T follicular helper (Tfh) cells in the lymphoid tissue. The GC Tfh cells can be heterogeneous based on the expression of chemokine receptors associated with T helper lineages, such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17). However, the heterogeneous nature of GC Tfh cells in the lymphoid tissue and its association with viral persistence and Ab production during chronic SIV/HIV infection are not known. To address this, we characterized the expression of CXCR3, CCR4, and CCR6 on GC Tfh cells in lymph nodes following SIVmac251 infection in rhesus macaques. In SIV-naive rhesus macaques, only a small fraction of GC Tfh cells expressed CXCR3, CCR4, and CCR6. However, during chronic SIV infection, the majority of GC Tfh cells expressed CXCR3, whereas the proportion of CCR4(+) cells did not change, and CCR6(+) cells decreased. CXCR3(+), but not CXCR3(-), GC Tfh cells produced IFN-γ (Th1 cytokine) and IL-21 (Tfh cytokine), whereas both subsets expressed CD40L following stimulation. Immunohistochemistry analysis demonstrated an accumulation of CD4(+)IFN-γ(+) T cells within the hyperplastic follicles during chronic SIV infection. CXCR3(+) GC Tfh cells also expressed higher levels of ICOS, CCR5, and α4ß7 and contained more copies of SIV DNA compared with CXCR3(-) GC Tfh cells. However, CXCR3(+) and CXCR3(-) GC Tfh cells delivered help to B cells in vitro for production of IgG. These data demonstrate that chronic SIV infection promotes expansion of Th1-biased GC Tfh cells, which are phenotypically and functionally distinct from conventional GC Tfh cells and contribute to hypergammaglobulinemia and viral reservoirs.


Assuntos
Centro Germinativo/citologia , Centro Germinativo/fisiologia , Tecido Linfoide/citologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Animais , Linfócitos B/imunologia , Ligante de CD40/genética , Ligante de CD40/imunologia , Feminino , Centro Germinativo/imunologia , Hipergamaglobulinemia , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucinas/biossíntese , Interleucinas/imunologia , Tecido Linfoide/imunologia , Macaca mulatta , Receptores CCR4/imunologia , Receptores CCR6/imunologia , Receptores CXCR3/imunologia , Receptores CXCR5/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia
11.
Gastroenterology ; 151(4): 733-746.e12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27342212

RESUMO

BACKGROUND & AIMS: There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. METHODS: Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. RESULTS: F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. CONCLUSIONS: Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.


Assuntos
Moléculas de Adesão Celular/deficiência , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/genética , Receptores de Superfície Celular/deficiência , Animais , Colesterol , Dieta Hiperlipídica/métodos , Carboidratos da Dieta , Modelos Animais de Doenças , Disbiose/complicações , Disbiose/genética , Frutose , Microbioma Gastrointestinal/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Permeabilidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Virol ; 90(19): 8842-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466414

RESUMO

UNLABELLED: The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. IMPORTANCE: The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas de DNA/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Portadores de Fármacos , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vaccinia virus/genética , Proteínas do Envelope Viral/genética , Viremia/prevenção & controle
13.
J Immunol ; 195(3): 994-1005, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116502

RESUMO

The goal of an HIV vaccine is to generate robust and durable protective Ab. Vital to this goal is the induction of CD4(+) T follicular helper (TFH) cells. However, very little is known about the TFH response to HIV vaccination and its relative contribution to magnitude and quality of vaccine-elicited Ab titers. In this study, we investigated these questions in the context of a DNA/modified vaccinia virus Ankara SIV vaccine with and without gp140 boost in aluminum hydroxide in rhesus macaques. In addition, we determined the frequency of vaccine-induced CD4(+) T cells coexpressing chemokine receptor, CXCR5 (facilitates migration to B cell follicles) in blood and whether these responses were representative of lymph node TFH responses. We show that booster modified vaccinia virus Ankara immunization induced a distinct and transient accumulation of proliferating CXCR5(+) and CXCR5(-) CD4 T cells in blood at day 7 postimmunization, and the frequency of the former but not the latter correlated with TFH and B cell responses in germinal centers of the lymph node. Interestingly, gp140 boost induced a skewing toward CXCR3 expression on germinal center TFH cells, which was strongly associated with longevity, avidity, and neutralization potential of vaccine-elicited Ab response. However, CXCR3(+) cells preferentially expressed the HIV coreceptor CCR5, and vaccine-induced CXCR3(+)CXCR5(+) cells showed a moderate positive association with peak viremia following SIV251 infection. Taken together, our findings demonstrate that vaccine regimens that elicit CXCR3-biased TFH cell responses favor Ab persistence and avidity but may predispose to higher acute viremia in the event of breakthrough infections.


Assuntos
Vacinas contra a SAIDS/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Viremia/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Glicoproteínas/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/biossíntese , Linfonodos/citologia , Linfonodos/imunologia , Macaca mulatta , Masculino , Receptor de Morte Celular Programada 1/biossíntese , Receptores CCR5/biossíntese , Receptores CXCR3/biossíntese , Receptores CXCR5/biossíntese , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinação/veterinária , Vacinas de DNA , Carga Viral/imunologia , Viremia/virologia
14.
J Virol ; 89(8): 4690-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653428

RESUMO

Here, we show that a CD40L-adjuvanted DNA/modified vaccinia virus Ankara (MVA) simian immunodeficiency virus (SIV) vaccine enhances protection against a pathogenic neutralization-resistant mucosal SIV infection, improves long-term viral control, and prevents AIDS. Analyses of serum IgG antibodies to linear peptides of SIV Env revealed a strong response to V2, with targeting of fewer epitopes in the immunodominant region of gp41 (gp41-ID) and the V1 region as a correlate for enhanced protection. Greater expansion of antiviral CD8 T cells in the gut correlated with long-term viral control.


Assuntos
Adjuvantes Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vaccinia virus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Ligante de CD40/administração & dosagem , Ligante de CD40/farmacologia , Mapeamento de Epitopos , Imunidade Celular , Imunoglobulina G/sangue , Estimativa de Kaplan-Meier , Macaca mulatta , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vaccinia virus/genética
15.
Eur J Immunol ; 43(12): 3219-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24030473

RESUMO

CD4(+) T follicular helper (TFH) cells are central for generation of long-term B-cell immunity. A defining phenotypic attribute of TFH cells is the expression of the chemokine R CXCR5, and TFH cells are typically identified by co-expression of CXCR5 together with other markers such as PD-1, ICOS, and Bcl-6. Herein, we report high-level expression of the nutrient transporter folate R 4 (FR4) on TFH cells in acute viral infection. Distinct from the expression profile of conventional TFH markers, FR4 was highly expressed by naive CD4(+) T cells, was downregulated after activation and subsequently re-expressed on TFH cells. Furthermore, FR4 expression was maintained, albeit at lower levels, on memory TFH cells. Comparative gene expression profiling of FR4(hi) versus FR4(lo) Ag-specific CD4(+) effector T cells revealed a molecular signature consistent with TFH and TH1 subsets, respectively. Interestingly, genes involved in the purine metabolic pathway, including the ecto-enzyme CD73, were enriched in TFH cells compared with TH1 cells, and phenotypic analysis confirmed expression of CD73 on TFH cells. As there is now considerable interest in developing vaccines that would induce optimal TFH cell responses, the identification of two novel cell surface markers should be useful in characterization and identification of TFH cells following vaccination and infection.


Assuntos
Regulação da Expressão Gênica/imunologia , Receptores de Superfície Celular/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , 5'-Nucleotidase/biossíntese , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Doença Aguda , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/biossíntese , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Camundongos , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores CXCR5/biossíntese , Receptores CXCR5/genética , Receptores CXCR5/imunologia , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Viroses/genética , Viroses/imunologia , Viroses/metabolismo
16.
J Immunol ; 188(1): 77-84, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22116826

RESUMO

Nutrition is a critical but poorly understood determinant of immunity. There is abundant epidemiological evidence linking protein malnutrition to impaired vaccine efficacy and increased susceptibility to infections; yet, the role of dietary protein in immune memory homeostasis remains poorly understood. In this study, we show that protein-energy malnutrition induced in mice by low-protein (LP) feeding has a detrimental impact on CD8 memory. Relative to adequate protein (AP)-fed controls, LP feeding in lymphocytic choriomeningitis virus (LCMV)-immune mice resulted in a 2-fold decrease in LCMV-specific CD8 memory T cells. Adoptive transfer of memory cells, labeled with a division tracking dye, from AP mice into naive LP or AP mice demonstrated that protein-energy malnutrition caused profound defects in homeostatic proliferation. Remarkably, this defect occurred despite the lymphopenic environment in LP hosts. Whereas Ag-specific memory cells in LP and AP hosts were phenotypically similar, memory cells in LP hosts were markedly less responsive to polyinosinic-polycytidylic acid-induced acute proliferative signals. Furthermore, upon recall, memory cells in LP hosts displayed reduced proliferation and protection from challenge with LCMV-clone 13, resulting in impaired viral clearance in the liver. The findings show a metabolic requirement of dietary protein in sustaining functional CD8 memory and suggest that interventions to optimize dietary protein intake may improve vaccine efficacy in malnourished individuals.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas Alimentares , Memória Imunológica , Deficiência de Proteína/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Feminino , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Transgênicos , Deficiência de Proteína/genética , Deficiência de Proteína/patologia , Deficiência de Proteína/virologia
17.
Elife ; 122024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385642

RESUMO

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.


Assuntos
Vacinas contra a AIDS , HIV-1 , Animais , Macaca mulatta , Quimiocina CXCL10 , Anticorpos Anti-HIV , DNA
18.
Cells ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38727292

RESUMO

Integrin α4ß7+ T cells perpetuate tissue injury in chronic inflammatory diseases, yet their role in hepatic fibrosis progression remains poorly understood. Here, we report increased accumulation of α4ß7+ T cells in the liver of people with cirrhosis relative to disease controls. Similarly, hepatic fibrosis in the established mouse model of CCl4-induced liver fibrosis was associated with enrichment of intrahepatic α4ß7+ CD4 and CD8 T cells. Monoclonal antibody (mAb)-mediated blockade of α4ß7 or its ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 attenuated hepatic inflammation and prevented fibrosis progression in CCl4-treated mice. Improvement in liver fibrosis was associated with a significant decrease in the infiltration of α4ß7+ CD4 and CD8 T cells, suggesting that α4ß7/MAdCAM-1 axis regulates both CD4 and CD8 T cell recruitment to the fibrotic liver, and α4ß7+ T cells promote hepatic fibrosis progression. Analysis of hepatic α4ß7+ and α4ß7- CD4 T cells revealed that α4ß7+ CD4 T cells were enriched for markers of activation and proliferation, demonstrating an effector phenotype. The findings suggest that α4ß7+ T cells play a critical role in promoting hepatic fibrosis progression, and mAb-mediated blockade of α4ß7 or MAdCAM-1 represents a promising therapeutic strategy for slowing hepatic fibrosis progression in chronic liver diseases.


Assuntos
Moléculas de Adesão Celular , Progressão da Doença , Integrinas , Cirrose Hepática , Fígado , Mucoproteínas , Animais , Feminino , Humanos , Masculino , Camundongos , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Imunoglobulinas/metabolismo , Inflamação/patologia , Integrinas/metabolismo , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Mucoproteínas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tetracloreto de Carbono/farmacologia , Tetracloreto de Carbono/toxicidade
19.
J Clin Invest ; 134(9)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470479

RESUMO

CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.


Assuntos
Encéfalo , Linfócitos T CD4-Positivos , Macaca mulatta , Receptores CCR7 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores CCR7/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Vigilância Imunológica
20.
Vaccines (Basel) ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38005961

RESUMO

HCMV vaccine development has traditionally focused on viral antigens identified as key targets of neutralizing antibody (NAb) and/or T cell responses in healthy adults with chronic HCMV infection, such as glycoprotein B (gB), the glycoprotein H-anchored pentamer complex (PC), and the unique long 83 (UL83)-encoded phosphoprotein 65 (pp65). However, the protracted absence of a licensed HCMV vaccine that reduces the risk of infection in pregnancy regardless of serostatus warrants a systematic reassessment of assumptions informing vaccine design. To illustrate this imperative, we considered the hypothesis that HCMV proteins infrequently detected as targets of T cell responses may contain important vaccine antigens. Using an extant dataset from a T cell profiling study, we tested whether HCMV proteins recognized by only a small minority of participants encompass any T cell epitopes. Our analyses demonstrate a prominent skewing of T cell responses away from most viral proteins-although they contain robust predicted CD8 T cell epitopes-in favor of a more restricted set of proteins. Our findings raise the possibility that HCMV may benefit from evading the T cell recognition of certain key proteins and that, contrary to current vaccine design approaches, including them as vaccine antigens could effectively take advantage of this vulnerability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa