Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38790339

RESUMO

This study explores an approach to design and prepare a multilayer scaffold mimicking interstratified natural tissue. This multilayer construct, composed of chitosan matrices with graded nanohydroxyapatite concentrations, was achieved through an in situ biomineralization process applied to individual layers. Three distinct precursor concentrations were considered, resulting in 10, 20, and 30 wt% nanohydroxyapatite content in each layer. The resulting chitosan/nanohydroxyapatite (Cs/n-HAp) scaffolds, created via freeze-drying, exhibited nanohydroxyapatite nucleation, homogeneous distribution, improved mechanical properties, and good cytocompatibility. The cytocompatibility analysis revealed that the Cs/n-HAp layers presented cell proliferation similar to the control in pure Cs for the samples with 10% n-HAp, indicating good cytocompatibility at this concentration, while no induction of apoptotic death pathways was demonstrated up to a 20 wt% n-Hap concentration. Successful multilayer assembly of Cs and Cs/n-HAp layers highlighted that the proposed approach represents a promising strategy for mimicking multifaceted tissues, such as osteochondral ones.

2.
Diagnostics (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611604

RESUMO

Cardiac involvement in sickle beta thalassemia (Sß-thal) patients has been poorly investigated. We aimed to evaluate cardiac function and myocardial iron overload by cardiovascular magnetic resonance (CMR) in patients with Sß-thal. One-hundred and eleven Sß-thal patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) network were studied and compared with 46 sickle cell anemia (SCA) patients and with 111 gender- and age- matched healthy volunteers. Cine images were acquired to quantify biventricular function. Myocardial iron overload (MIO) was assessed by the T2* technique, while macroscopic myocardial fibrosis was evaluated by the late gadolinium enhancement (LGE) technique. In Sß-thal and SCA patients, the morphological and functional CMR parameters were not significantly different, except for the left atrial area and left ventricular (LV) stroke volume, indexed by body surface area (p = 0.023 and p = 0.048, respectively), which were significantly higher in SCA patients. No significant differences between the two groups were found in terms of myocardial iron overload and macroscopic myocardial fibrosis. When compared to healthy subjects, Sß-thal patients showed significantly higher bi-atrial and biventricular parameters, except for LV ejection fraction, which was significantly lower. The CMR analysis confirmed that Sß-thal and SCA patients are phenotypically similar. Since Sß-thal patients showed markedly different morphological and functional indices from healthy subjects, it would be useful to identify Sß-thal/SCA-specific bi-atrial and biventricular reference values.

3.
J Biomed Mater Res A ; 110(7): 1372-1385, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35262240

RESUMO

Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td  = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Condrogênese , Colágeno/química , Humanos , Iridoides , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
J Cardiovasc Echogr ; 30(1): 29-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766103

RESUMO

Pseudoaneurysm complicated by aortopulmonary fistula (APF) after a Bentall procedure is extremely rare but potentially fatal, so timely diagnosis and treatment are critical. We present a subacute case of a post-traumatic APF which has had initial aspecific symptoms and later an acute worsening heart failure with chest pain not responding to medical treatment and requiring emergency surgery.

5.
Vet Sci ; 6(4)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717551

RESUMO

Osteochondral defects are a common problem in both human medicine and veterinary practice although with important limits concerning the cartilaginous tissue regeneration. Interest in the subchondral bone has grown, as it is now considered a key element in the osteochondral defect healing. The aim of this work was to generate and to evaluate the architecture of three cell-free scaffolds made of collagen, magnesium/hydroxyapatite and collagen hydroxyapatite/wollastonite to be implanted in a sheep animal model. Scaffolds were designed in a bilayer configuration and a novel "Honey" configuration, where columns of hydroxyapatite were inserted within the collagen matrix. The use of different types of scaffolds allowed us to identify the best scaffold in terms of integration and tissue regeneration. The animals included were divided into four groups: three were treated using different types of scaffold while one was left untreated and represented the control group. Evaluations were made at 3 months through CT analysis. The novel "Honey" configuration of the scaffold with hydroxyapatite seems to allow for a better reparative process, although we are still far from obtaining a complete restoration of the defect at this time point of follow-up.

6.
J Mech Behav Biomed Mater ; 86: 294-304, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006278

RESUMO

Articular cartilage regeneration is still an open challenge in the field of tissue engineering. Although autologous chondrocytes seeded on collagen scaffolds (CSs) have already showed interesting results in the long-term repair of chondral lesions, they are not exempt from disadvantages that could be overcome using mesenchymal stem cells (MSCs). The ability of polymeric scaffolds to support MSCs proliferation and differentiation has been widely documented. However, few studies assessed their mechanical performances and additionally performing a single mechanical test, i.e. stress-strain or stress-relaxation in compression. Articular cartilage, though, possesses unique and multifaceted mechanical properties that can be exhaustively described only implementing a complete set of mechanical tests. Hence, the final aim of this study was to in depth assess the mechanical properties of human MSCs-cultured collagen scaffolds applying unconfined stress-strain, stress-relaxation and dynamic compression tests and identify key mechanical parameters. Firstly, plain CSs were fabricated and cultured under chondrogenic conditions with human MSCs (hMSCs). CSs displayed a high-interconnected porosity permitting uniform hMSCs distribution along the scaffold depth. Within CSs, hMSCs differentiated in chondroblasts, characterized by the presence of the lacunae and by a pericellular matrix positive for GAGs and for type 2 collagen deposition. The deep implemented mechanical characterization highlighted that the engineered constructs display (i) higher resistance to compression, (ii) more marked viscoelastic behavior over time and (iii) increased dynamic properties compared to naked CSs. In particular, stress-strain testes showed significant increase in the engineered constructs' stiffness that can be related to the proteoglycan deposition, observed by histology at the end of culture. Stress-relaxation and dynamic tests pointed out a substantial increase of peak and equilibrium stresses, relaxation time and dynamic modulus in the engineered constructs compared to empty CSs, suggesting a considerable decrease in scaffold permeability due to a strong chondral matrix deposition. Overall, the obtained results indicate a significant improvement of cell/CS mechanical performance toward a cartilage-like mechanical behavior.


Assuntos
Cartilagem/citologia , Cartilagem/fisiologia , Engenharia , Fenômenos Mecânicos , Células-Tronco Mesenquimais/citologia , Regeneração , Fenômenos Biomecânicos , Colágeno/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Estresse Mecânico
7.
J Mech Behav Biomed Mater ; 62: 209-221, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27219851

RESUMO

Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties.


Assuntos
Colágeno/química , Engenharia Tecidual , Alicerces Teciduais , Implantes Absorvíveis , Cápsulas , Microscopia Eletrônica de Varredura , Porosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa