Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 71(12): 3428-3436, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32103263

RESUMO

Awns are bristle-like structures formed at the tip of the lemma on the florets of some cereal grasses. Wild-type wheat is awned, but awnletted and awnless variants have been selected and nowadays all forms are cultivated. In this study, we dissected the genetic control underlying variation of this characteristic feature by association mapping in a large panel of 1110 winter wheat cultivars of worldwide origin. We identified the B1 (Tipped 1) locus on chromosome 5A as the major determinant of awnlessness globally. Using a combination of fine-mapping and expression analysis, we identified a putative C2H2 zinc finger protein with an EAR domain, characteristic of transcriptional repressors, as a likely candidate for Tipped 1. This gene was found to be up-regulated in awnless B1 compared with awned b1 plants, indicating that misexpression of this transcriptional regulator may contribute to the reduction of awn length in B1 plants. Taken together, our study provides an entry point towards a better molecular understanding of the evolution of morphological features in cereals through selection and breeding.


Assuntos
Dedos de Zinco CYS2-HIS2 , Triticum , Melhoramento Vegetal , Estruturas Vegetais , Poaceae , Triticum/genética
2.
Theor Appl Genet ; 133(8): 2335-2342, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32399653

RESUMO

KEY MESSAGE: A simple and rapid speed breeding system was developed for short-day crops that enables up to five generations per year using LED lighting systems that allow very specific adjustments regarding light intensity and quality. Plant breeding is a key element for future agricultural production that needs to cope with a growing human population and climate change. However, the process of developing suitable cultivars is time-consuming, not least because of the long generation times of crops. Recently, speed breeding has been introduced for long-day crops, but a similar protocol for short-day crops is lacking to date. In this study, we present a speed breeding protocol based on light-emitting diodes (LEDs) that allow to modify light quality, and exemplarily demonstrate its effectiveness for the short-day crops soybean (Glycine max), rice (Oryza sativa) and amaranth (Amaranthus spp.). Adjusting the photoperiod to 10 h and using a blue-light enriched, far-red-deprived light spectrum facilitated the growth of short and sturdy soybean plants that flowered ~ 23 days after sowing and matured within 77 days, thus allowing up to five generations per year. In rice and amaranth, flowering was achieved ~ 60 and ~ 35 days after sowing, respectively. Interestingly, the use of far-red light advanced flowering by 10 and 20 days in some amaranth and rice genotypes, respectively, but had no impact on flowering in soybeans, highlighting the importance of light quality for speed breeding protocols. Taken together, our short-day crops' speed breeding protocol enables several generations per year using crop-specific LED-based lighting regimes, without the need of tissue culture tools such as embryo rescue. Moreover, this approach can be readily applied to a multi-storey 96-cell tray-based system to integrate speed breeding with genomics, toward a higher improvement rate in breeding.


Assuntos
Amaranthus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Fotoperíodo , Melhoramento Vegetal/métodos , Amaranthus/efeitos da radiação , Produtos Agrícolas/efeitos da radiação , Flores/efeitos da radiação , Germinação/efeitos da radiação , Luz , Oryza/genética , Oryza/efeitos da radiação , Fenótipo , Glycine max/efeitos da radiação
3.
Theor Appl Genet ; 132(3): 617-626, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29971473

RESUMO

KEY MESSAGE: Citizen science, an approach that includes normal citizens in scientific research, holds great potential also for plant sciences and breeding and can be a powerful research tool to complement traditional approaches. Citizen science is an approach that includes normal citizens in scientific research, but has so far not been exploited by the various disciplines in plant sciences. Moreover, global threats challenge human well-being and science can provide solutions, but needs to leave the ivory tower in the mind of the broader public. In 2016, we performed the '1000 Gardens-the soybean experiment' citizen science project, that aimed at finding citizens in Germany who would grow soybean lines in their own gardens and evaluate them for a range of traits related to adaptation and agronomic performance. Here, we describe details of this project, i.e. the recruitment, performance, and compliance of the citizen scientists. A total of 2492 citizen scientists volunteered for the project, but through the high media coverage a much broader audience than just the participants was reached. Our 1000 Gardens project was successful in collecting a scientifically unique data set with heritabilities ranging up to 0.60 for maturity date or 0.69 for plant height. Our results suggest that the citizen science approach holds great potential also for plant sciences and can be a powerful research tool to complement traditional approaches. Our project was also successful in raising public awareness about the importance of plant breeding and in communicating key messages on the manifold benefits of legumes for a sustainable agriculture to a broader public. Thus, citizen science appears as a promising avenue to demonstrate the value of breeding and science to the general public by including normal citizens in scientific research.


Assuntos
Glycine max/genética , Melhoramento Vegetal , Pesquisadores , Pesquisa , Geografia , Alemanha , Característica Quantitativa Herdável , Mídias Sociais , Fatores de Tempo
4.
Elife ; 52016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27680998

RESUMO

Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa