Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 233: 371-377, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590266

RESUMO

Boreal forests are an important carbon (C) sink and fire is the main natural disturbance, directly affecting the C-cycle via emissions from combustion of biomass and organic matter and indirectly through long-term changes in C-dynamics including soil respiration. Carbon dioxide (CO2) emission from soil (soil respiration) is one of the largest fluxes in the global C-cycle. Recovery of vegetation, organic matter and soil respiration may be influenced by the intensity of post-fire management such as salvage logging. To study the impact of forest fire, fire and salvage, and recovery time on soil respiration and soil C and N content, we sampled two permanent research areas in north-western Estonia that were damaged by fire: Vihterpalu (59°13' N 23°49' E) in 1992 and Nõva (59°10' N 23°45' E) in 2008. Three types of sample plots were established: 1) unburned control with no harvesting (CO); 2) burned and uncleared (BU); and 3) burned and cleared (BC). Measurements were made in 2013, 21 years after wildfire in Vihterpalu and 5 years after wildfire in Nõva. Soil respiration ranged from 0.00 to 1.38 g CO2 m-2 h-1. Soil respiration in the burned and cleared areas (BC) was not reduced compared to burned and uncleared (BU) areas but the average soil respiration in unburned control areas was more than twice the value in burned areas (average soil respiration in CO areas was 0.34 CO2 m-2 h-1, versus 0.16 CO2 m-2 h-1, the average soil respiration of BC and BU combined). Recovery over 20 years was mixed; respiration was insignificantly lower on younger than older burned sites (when BC and BU values were combined, the average values were 0.15 vs. 0.17 g CO2 m-2 h-1, respectively); soil-C was greater in the older burned plots than the younger (when BC and BU values were combined, the average values were 9.71 vs. 5.99 kg m-2, respectively); but root biomass in older and recently burned areas was essentially the same (average 2.23 and 2.11 kg m-2, respectively); soil-N was highest on burned areas 20 years after fire. Twenty years post-fire may be insufficient time for carbon dynamics to fully recover on these low productivity sandy sites.


Assuntos
Incêndios , Solo , Estônia , Florestas , Nitrogênio
2.
For Ecol Manage ; 262(2): 71-81, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24347809

RESUMO

During two measurement campaigns, from August to September 2008 and 2009, we quantified the major ecosystem fluxes in a hemiboreal forest ecosystem in Järvselja, Estonia. The main aim of this study was to separate the ecosystem flux components and gain insight into the performance of a multi-species multi-layered tree stand. Carbon dioxide and water vapor fluxes were measured using the eddy covariance method above and below the canopy in conjunction with the microclimate. Leaf and soil contributions were quantified separately by cuvette and chamber measurements, including fluxes of carbon dioxide, water vapor, nitrogen oxides, nitrous oxide, methane, ozone, sulfur dioxide, and biogenic volatile organic compounds (isoprene and monoterpenes). The latter have been as well characterized for monoterpenes in detail. Based on measured atmospheric trace gas concentrations, the flux tower site can be characterized as remote and rural with low anthropogenic disturbances. Our results presented here encourage future experimental efforts to be directed towards year round integrated biosphere-atmosphere measurements and development of process-oriented models of forest-atmosphere exchange taking the special case of a multi-layered and multi-species tree stand into account. As climate change likely leads to spatial extension of hemiboreal forest ecosystems a deep understanding of the processes and interactions therein is needed to foster management and mitigation strategies.

3.
Sci Total Environ ; 718: 135291, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843307

RESUMO

Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil-atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179 years following stand-replacing fires in hemiboreal Scots pine forests in Estonia. Changes in extracellular activity, litter decomposition, vegetation biomass, and soil physicochemical properties were assessed in relation to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. Soil temperature was highest 8 years after fire, whereas soil moisture varied through the fire chronosequences without a consistent pattern. Litter decomposition and CO2 efflux were still lower 8 years after fire compared with pre-fire levels (179 years after fire). Both returned to pre-fire levels before vegetation re-established, and CO2 efflux was only strongly responsive to temperature from 19 years after fire onward. Recovery of CO2 efflux in the long term was associated with a moderate effect of fire on enzyme activity, the input of above- and below-ground litter carbon, and the re-establishment of vegetation. Soil acted as a CH4 sink and N2O source similarly in all successional stages. Compared with soil moisture and time after fire, soil temperature was the most important predictor for both GHGs. The re-establishment of overstorey and vegetation cover (mosses and lichens) might have caused an increase in CH4 and N2O effluxes in the studied areas, respectively.


Assuntos
Incêndios Florestais , Dióxido de Carbono , Estônia , Florestas , Gases de Efeito Estufa , Metano , Óxido Nitroso , Solo
4.
PLoS One ; 12(6): e0177927, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28614351

RESUMO

Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.


Assuntos
Pinus sylvestris/fisiologia , Algoritmos , Simulação por Computador , Ecossistema , Microbiologia do Solo
5.
Tree Physiol ; 25(7): 793-801, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15870049

RESUMO

We developed a basal area growth model for recovery of advance growth of Norway spruce trees after clear-cutting. Stem diameter growth at ground level and needle-mass characteristics were measured on permanent sample plots in Estonia. Both tree ring analysis (destructive sampling on one sample plot) and yearly repeated measurement data (two plots) were used to quantify advance growth. Basal area growth of small trees was estimated by multiple regression analysis. Previous-year basal area of the tree and basal area growth explained tree performance the next year. Tree needle-mass variables characterizing the acclimation status of the tree were included in the model as explanatory factors. Needle samples (one shoot from the upper third of each tree crown) were collected each year after the growth period from all sample trees. Needle masses of shoots from consecutive years were correlated and this variable was used as a predictor in the simulation model. Accelerating growth was observed in trees that exceeded the growth threshold in the year after release: the greater the needle mass per shoot, the greater the acceleration in growth. Competition among advance regeneration trees was included in the model: small trees under taller neighbors exhibited reduced growth. We found that trees released from a long period of heavy shade can survive, but the time needed for acclimation and resumption of competitive growth rates is considerably longer than for trees released from light shade. Such trees can be used for forest regeneration, but competition control (particularly reducing the proportion of fast-growing hardwoods) is required.


Assuntos
Modelos Biológicos , Picea/crescimento & desenvolvimento , Regeneração , Aclimatação , Biomassa , Ecossistema , Agricultura Florestal , Luz , Picea/anatomia & histologia , Picea/fisiologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Análise de Regressão , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa