RESUMO
Inborn hemolytic anemia requiring frequent blood transfusions can be a life-threatening disease. Treatment, besides blood transfusion, includes iron chelation for prevention of iron accumulation due to frequent blood transfusions. We present the results of a clinical investigation where the proband was diagnosed with severe hemolytic anemia of unknown origin soon after birth. Transfusion was required every 4-6 weeks. After whole exome sequencing of the proband and his parents as well as a healthy sibling, we established that the proband had a compound heterozygous state carrying two rare variants in the erythrocytic spectrin gene, SPTA1. The maternal allele was a stop mutation (rs755630903) and the paternal allele was a missense mutation (rs375506528). The healthy sibling had the paternal variant but not the maternal variant. These rare variants of SPTA1 most likely account for the hemolytic anemia. A severely reduced osmotic resistance in the erythrocytes from the proband was demonstrated. Splenectomy considerably improved the hemolytic anemia and obviated the need for blood transfusion despite the severe clinical presentation.
RESUMO
In chronic lymphocytic leukemia, TP53 mutations and deletion of chromosome 17p are well-characterized biomarkers associated with poor progression-free and overall survival following chemoimmunotherapy. Patients harboring low burden TP53 mutations with variant allele frequencies of 0.3-15% have been shown to have similar dismal outcome as those with high burden mutations. We here describe a highly sensitive deep targeted next-generation sequencing assay allowing for the detection of TP53 mutations as low as 0.2% variant allele frequency. Within a consecutive, single center cohort of 290 newly diagnosed patients with chronic lymphocytic leukemia, deletion of chromosome 17p was the only TP53 aberration significantly associated with shorter overall survival and treatment-free survival. We were unable to demonstrate any impact of TP53 mutations, whether high burden (variant allele frequency >10%) or low burden (variant allele frequency ≤10%), in the absence of deletion of chromosome 17p. In addition, the impact of high burden TP53 aberration (deletion of chromosome 17p and/or TP53 mutation with variant allele frequency >10%) was only evident for patients with IGHV unmutated status; no impact of TP53 aberrations on outcome was seen for patients with IGHV mutated status. In 61 patients at time of treatment, the prognostic impact of TP53 mutations over 1% variant allele frequency could be confirmed. This study furthers the identification of a clinical significant limit of detection for robust TP53 mutation analysis in chronic lymphocytic leukemia. Multicenter studies are needed for validation of ultra-sensitive TP53 mutation assays in order to define and implement a technical as well as a clinical lower limit of detection.
Assuntos
Alelos , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Mutação , Proteína Supressora de Tumor p53/genética , Idoso , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida , Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: Bevacizumab combined with chemotherapy produces clinical durable response in 25-30% of recurrent glioblastoma patients. This group of patients has shown improved survival and quality of life. The aim of this study was to investigate changes in gene expression associated with response and resistance to bevacizumab combination therapy. METHODS: Recurrent glioblastoma patients who had biomarker-accessible tumor tissue surgically removed both before bevacizumab treatment and at time of progression were included. Patients were grouped into responders (n = 7) and non-responders (n = 14). Gene expression profiling of formalin-fixed paraffin-embedded tumor tissue was performed using RNA-sequencing. RESULTS: By comparing pretreatment samples of responders with those of non-responders no significant difference was observed. In a paired comparison analysis of pre- and posttreatment samples of non-responders 1 gene was significantly differentially expressed. In responders, this approach revealed 256 significantly differentially expressed genes (72 down- and 184 up-regulated genes at the time of progression). Genes differentially expressed in responders revealed a shift towards a more proneural and less mesenchymal phenotype at the time of progression. CONCLUSIONS: Bevacizumab combination treatment demonstrated a significant impact on the transcriptional changes in responders; but only minimal changes in non-responders. This suggests that non-responding glioblastomas progress chaotically without following distinct gene expression changes while responding tumors adaptively respond or progress by means of the same transcriptional changes. In conclusion, we hypothesize that the identified gene expression changes of responding tumors are associated to bevacizumab response or resistance mechanisms.
Assuntos
Antineoplásicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Transcrição Gênica/efeitos dos fármacos , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto JovemRESUMO
BACKGROUND: Small fragments of tumor DNA can be found in the circulation of cancer patients, providing a noninvasive access to tumor material (liquid biopsy). Analysis of circulating tumor DNA (ctDNA) has been used for diagnosis, treatment decisions, and detection of therapy resistance, including in patients with tumors inaccessible for biopsy, making ctDNA an important alternative source of tumor material. Immediate separation of plasma is widely used in standard isolation of cell-free DNA to ensure high quality plasma DNA. However, these procedures are labor intensive and logistically challenging in a clinical setting. Here we investigate the concordance between standard blood collection for molecular analysis using immediate separation of plasma, compared to the use of collection tubes allowing for delayed processing. METHODS: In this study, we measured the fractional abundance of tumor specific mutations (BRAF p.V600E and PIK3CA p.H1047R) in ctDNA isolated from blood samples collected in either cell-stabilizing Cell-Free DNA BCT tubes (delayed processing within 72 hours) or standard K3EDTA tubes (immediate processing within 15 minutes). Twenty-five blood sample pairs (EDTA/BCT) were collected from patients with advanced solid cancers enrolled in early clinical trials. RESULTS: Concordance in the fractional abundance of mutations in ctDNA isolated from blood collected in either K3EDTA or BCT tubes from patients with different solid cancers was observed. CONCLUSIONS: This study indicates that BCT tubes are preferable for collection of circulating DNA in a clinical setting due to the favorable storage and shipping conditions.
Assuntos
Coleta de Amostras Sanguíneas/métodos , DNA Tumoral Circulante/isolamento & purificação , Análise Mutacional de DNA , HumanosRESUMO
Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , DNA Glicosilases/genética , Reparo do DNA/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Pessoa de Meia-Idade , RiscoRESUMO
Chromothripsis (CTH) is a phenomenon where multiple localized double-stranded DNA breaks result in complex genomic rearrangements. Although the DNA-repair mechanisms involved in CTH have been described, the mechanisms driving the localized "shattering" process remain unclear. High-throughput sequence analysis of a familial germline CTH revealed an inserted SVAE retrotransposon associated with a 110-kb deletion displaying hallmarks of L1-mediated retrotransposition. Our analysis suggests that the SVAE insertion did not occur prior to or after, but concurrent with the CTH event. We also observed L1-endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110-kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity facilitating DNA cleavage by catalytically active L1-endonuclease. Our data provide the first evidence that active and inactive human retrotransposons can serve as endogenous mutagens driving CTH in the germline.
Assuntos
Elementos Alu , Cromotripsia , Mutação em Linhagem Germinativa , Recombinação Homóloga , Elementos Nucleotídeos Longos e Dispersos , Sequência de Bases , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 5 , Humanos , Repetições Minissatélites , Mutagênese Insercional , Retroelementos , Deleção de SequênciaRESUMO
Germ-line mutations in the RAD51C gene have recently been identified in families with breast and ovarian cancer and have been associated with an increased risk of ovarian cancer. In this study, we describe the frequency of pathogenic RAD51C mutations identified in Danish breast and/or ovarian cancer families. We screened the RAD51C gene in 1228 Danish hereditary breast and/or ovarian cancer families by next-generation sequencing analysis. The frequency of the identified variants was examined in the exome sequencing project database and in data from 2000 Danish exomes and the presumed significance of missense and intronic variants was predicted by in silico analysis. We identified six families with a pathogenic mutation in RAD51C, including three frameshift mutations, one nonsense mutation, and 2 missense mutations. Overall, pathogenic RAD51C mutations were identified in 0.5 % of Danish families with increased risk of hereditary breast and/or ovarian cancer. Moreover, we identified 24 additional RAD51C variants of which 14 have not been previously reported in the literature. In this study, we determine the prevalence of RAD51C mutations in Danish breast and/or ovarian cancer families. We identified six pathogenic RAD51C mutations as well as 23 variants of uncertain clinical significance and one benign variant. Together, the study extends our knowledge of the RAD51C mutation spectrum and supports that RAD51C should be included in gene panel testing of individuals with high risk of breast and ovarian cancer.
Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Mutação/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Dinamarca , Exoma/genética , Feminino , Testes Genéticos/métodos , Humanos , Íntrons/genética , Pessoa de Meia-Idade , RiscoRESUMO
BACKGROUND: We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. METHODS AND RESULTS: Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed an almost complete lack of COX assembly in subject fibroblasts, consistent with the very low enzymatic activity, and pulse-labelling mitochondrial translation experiments showed a specific decrease in synthesis of the COX1 subunit, the core catalytic subunit that nucleates assembly of the holoenzyme. Whole exome sequencing identified compound heterozygous mutations (c.199dupC, c.215A>G) in COA3, a small inner membrane COX assembly factor, resulting in a pronounced decrease in the steady-state levels of COA3 protein. Retroviral expression of a wild-type COA3 cDNA completely rescued the COX assembly and mitochondrial translation defects, confirming the pathogenicity of the mutations, and resulted in increased steady-state levels of COX1 in control cells, demonstrating a role for COA3 in the stabilisation of this subunit. COA3 exists in an early COX assembly complex that contains COX1 and other COX assembly factors including COX14 (C12orf62), another single pass transmembrane protein that also plays a role in coupling COX1 synthesis with holoenzyme assembly. Immunoblot analysis showed that COX14 was undetectable in COA3 subject fibroblasts, and that COA3 was undetectable in fibroblasts from a COX14 subject, demonstrating the interdependence of these two COX assembly factors. CONCLUSIONS: The mild clinical course in this patient contrasts with nearly all other cases of severe COX assembly defects that are usually fatal early in life, and underscores the marked tissue-specific involvement in mitochondrial diseases.
Assuntos
Deficiência de Citocromo-c Oxidase/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Obesidade/genética , Adulto , Pré-Escolar , Ciclo-Oxigenase 1/biossíntese , Ciclo-Oxigenase 1/genética , Deficiência de Citocromo-c Oxidase/patologia , Nanismo/genética , Nanismo/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Exercício Físico/fisiologia , Exoma , Feminino , Fibroblastos , Regulação Enzimológica da Expressão Gênica , Humanos , Proteínas de Membrana/biossíntese , Proteínas Mitocondriais/biossíntese , Obesidade/patologiaRESUMO
Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c.5074G>C/p.Asp1692His, c.5074G>A/p.Asp1692Asn, c.5074G>T/p.Asp1692Tyr, c.5332G>A/p.Asp1778Asn, c.5332G>T/p.Asp1778Tyr, and c.5408G>C/p.Gly1803Ala), whereas five BRCA1 variants had no effect on splicing (c.4985T>C/p.Phe1662Ser, c.5072C>A/p.Thr1691Lys, c.5153G>C/p.Trp1718Ser, c.5154G>T/p.Trp1718Cys, and c.5333A>G/p.Asp1778Gly). Eight of the variants having an effect on splicing (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5074G>C/p.Asp1692His, c.5074G>A/p.Asp1692Asn, c.5074G>T/p.Asp1692Tyr, c.5332G>A/p.Asp1778Asn, c.5332G>T/p.Asp1778Tyr, and c.5408G>C/p.Gly1803Ala) were previously determined to have no or an uncertain effect on the protein level, whereas one variant (c.5072C>T/p.Thr1691Ile) were shown to have a strong effect on the protein level as well. In conclusion, our study emphasizes that in silico splicing prediction and mini-gene splicing analysis are important for the classification of BRCA1 missense variants located close to exon/intron boundaries.
Assuntos
Proteína BRCA1/genética , Mutação de Sentido Incorreto , Splicing de RNA , Sequência de Bases , Neoplasias da Mama , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , HumanosRESUMO
Linkage analysis, positional cloning, candidate gene mutation scanning and genome-wide association study approaches have all contributed significantly to our understanding of the underlying genetic architecture of breast cancer. Taken together, these approaches have identified genetic variation that explains approximately 30% of the overall familial risk of breast cancer, implying that more, and likely rarer, genetic susceptibility alleles remain to be discovered.
Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , MutaçãoRESUMO
BACKGROUND: Maternal immunization against KEL1 of the Kell blood group system can have serious adverse consequences for the fetus as well as the newborn baby. Therefore, it is important to determine the phenotype of the fetus to predict whether it is at risk. We present data that show the feasibility of predicting the fetal KEL1 phenotype using next-generation sequencing (NGS) technology. STUDY DESIGN AND METHODS: The KEL1/2 single-nucleotide polymorphism was polymerase chain reaction (PCR) amplified with one adjoining base, and the PCR product was sequenced using a genome analyzer (GAIIx, Illumina); several millions of PCR sequences were analyzed. RESULTS: The results demonstrated the feasibility of diagnosing the fetal KEL1 or KEL2 blood group from cell-free DNA purified from maternal plasma. CONCLUSION: This method requires only one primer pair, and the large amount of sequence information obtained allows well for statistical analysis of the data. This general approach can be integrated into current laboratory practice and has numerous applications. Besides DNA-based predictions of blood group phenotypes, platelet phenotypes, or sickle cell anemia, and the determination of zygosity, various conditions of chimerism could also be examined using this approach. To our knowledge, this is the first report focused on antenatal blood group determination using NGS.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sistema do Grupo Sanguíneo de Kell/genética , Diagnóstico Pré-Natal/métodos , DNA/análise , DNA/sangue , Feminino , Sangue Fetal/imunologia , Humanos , Recém-Nascido , Sistema do Grupo Sanguíneo de Kell/sangue , Troca Materno-Fetal/imunologia , Mães , Fenótipo , Gravidez/sangueRESUMO
Mutations in BRCA1 and BRCA2 predispose carriers to early onset breast and ovarian cancer. A common problem in clinical genetic testing is interpretation of variants with unknown clinical significance. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium was initiated to evaluate and implement strategies to characterize the clinical significance of BRCA1 and BRCA2 variants. As an initial project of the ENIGMA Splicing Working Group, we report splicing and multifactorial likelihood analysis of 25 BRCA1 and BRCA2 variants from seven different laboratories. Splicing analysis was performed by reverse transcriptase PCR or mini gene assay, and sequencing to identify aberrant transcripts. The findings were compared to bioinformatic predictions using four programs. The posterior probability of pathogenicity was estimated using multifactorial likelihood analysis, including co-occurrence with a deleterious mutation, segregation and/or report of family history. Abnormal splicing patterns expected to lead to a non-functional protein were observed for 7 variants (BRCA1 c.441+2T>A, c.4184_4185+2del, c.4357+1G>A, c.4987-2A>G, c.5074G>C, BRCA2 c.316+5G>A, and c.8754+3G>C). Combined interpretation of splicing and multifactorial analysis classified an initiation codon variant (BRCA2 c.3G>A) as likely pathogenic, uncertain clinical significance for 7 variants, and indicated low clinical significance or unlikely pathogenicity for another 10 variants. Bioinformatic tools predicted disruption of consensus donor or acceptor sites with high sensitivity, but cryptic site usage was predicted with low specificity, supporting the value of RNA-based assays. The findings also provide further evidence that clinical RNA-based assays should be extended from analysis of invariant dinucleotides to routinely include all variants located within the donor and acceptor consensus splicing sites. Importantly, this study demonstrates the added value of collaboration between laboratories, and across disciplines, to collate and interpret information from clinical testing laboratories to consolidate patient management.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Idoso , Sequência de Bases , Simulação por Computador , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Humanos , Funções Verossimilhança , Pessoa de Meia-Idade , Modelos Genéticos , Dados de Sequência Molecular , Análise Multivariada , Mutação , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Análise de Sequência de RNARESUMO
Germ-line mutations in BRCA2 predispose to breast and ovarian cancer. Mutations are widespread throughout the gene and include disease-causing mutations as frameshift, nonsense, splicing mutations and large genomic rearrangements. However a large number of mutations, including missense, silent and intron variants are of unknown significance. Here, we describe the functional characterization of a silent mutation (nucleotide 744 G --> A/c.516 G --> A, Lys172Lys) in exon 6 of BRCA2 in a Danish family with breast and ovarian cancer. Exon trapping analysis showed that the mutation results in skipping of exon 6 and/or both exon 5 and 6, which was verified by RT-PCR analysis on RNA isolated from whole blood of the affected patient. We therefore conclude that the BRCA2 silent mutation Lys172Lys is a disease-causing mutation.
Assuntos
Neoplasias da Mama/genética , Genes BRCA2 , Predisposição Genética para Doença , Adulto , Idoso , Neoplasias da Mama Masculina/genética , Cromatografia Líquida de Alta Pressão , Éxons/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/genética , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We have recently identified a Greenlandic Inuit BRCA1 nucleotide 234T>G/c.115T>G (p.Cys39Gly) founder mutation, which at that time was the only disease-causing BRCA1/BRCA2 mutation identified in this population. Here, we describe the identification of a novel disease-causing BRCA1 nucleotide 4803delCC/c.4684delCC mutation in a Greenlandic Inuit with ovarian cancer. The mutation introduces a frameshift and a premature stop at codon 1572. We have also identified a BRCA1 nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in another Greenlandic individual with ovarian cancer. This patient share a 1-2 Mb genomic fragment, containing the BRCA1 gene, with four Danish families harbouring the same mutation, suggesting that the 249T>A/c.130T>A (p.Cys44Ser) mutation originates from a Danish ancestor. We conclude that screening of Greenlandic Inuits with high risk of breast or ovarian cancer should include sequencing of the entire BRCA1 gene.
Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Mutação da Fase de Leitura , Inuíte/genética , Neoplasias Ovarianas/genética , Deleção de Sequência , Adulto , Sequência de Bases , Neoplasias da Mama/etnologia , Códon sem Sentido , Análise Mutacional de DNA , Feminino , Efeito Fundador , Predisposição Genética para Doença , Testes Genéticos , Groenlândia , Hereditariedade , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neoplasias Ovarianas/etnologia , Linhagem , Medição de Risco , Fatores de RiscoRESUMO
BACKGROUND INFORMATION: MYG1 [Melanocyte proliferating gene 1, also known as Gamm1 (NM_021640)] is a recently described gene of unknown function. MYG1 orthologues are found in simple as well as complex eukaryotes. According to sequence homology, MYG1 is considered to have a metal-dependent protein hydrolase (UPF0160) domain. The purpose of the present study was to determine the expression and subcellular localization of MYG1 protein and to identify physiological processes connected to MYG1 function. RESULTS: Human and mouse MYG1 is ubiquitously expressed, with the highest level in the testis. Analysis of mouse embryos moreover revealed a uniform Myg1 expression at E (embryonic day) 8.5, but at E11.75 expression becomes restricted predominantly to the developing brain and eye, limb buds and tail region. MYG1 exhibits a mitochondrial targeting signal in the N-terminal region and a Pat7-type nuclear localization signal in the region between amino acids 33-39 and localizes to these compartments. No active shuttling of MYG1 between the nucleus and the mitochondria was detected and the distribution of MYG1 was not dependent on the phase of the cell cycle. Immunoprecipitation of C-terminally FLAG-tagged MYG1 from HeLa cells did not identify any co-precipitated proteins. siRNA (short interfering RNA)-mediated knockdown of MYG1 mRNA was mainly followed by changes in the level of transcripts encoding factors involved in developmental tissue patterning and growth as well as immune-related processes. CONCLUSIONS: Taken together, we infer that MYG1 is a ubiquitous nucleo-mitochondrial protein, with differential pattern and level of expression during embryonic development. MYG1 expression in normal adult tissues is stable and our data suggest MYG1 involvement in early developmental processes and also in adult stress/illness conditions.
Assuntos
Proteínas Mitocondriais/análise , Proteínas Mitocondriais/genética , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteínas/análise , Proteínas/genética , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Embrião de Mamíferos , Exonucleases , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismoRESUMO
BRCA1 and BRCA2 germ-line mutations predispose to breast and ovarian cancer. Large genomic rearrangements of BRCA1 account for 0-36% of all disease causing mutations in various populations, while large genomic rearrangements in BRCA2 are more rare. We examined 642 East Danish breast and/or ovarian cancer patients in whom a deleterious mutation in BRCA1 and BRCA2 was not detected by sequencing using the multiplex ligation-dependent probe amplification (MLPA) assay. We identified 15 patients with 7 different genomic rearrangements, including a BRCA1 exon 5-7 deletion with a novel breakpoint, a BRCA1 exon 13 duplication, a BRCA1 exon 17-19 deletion, a BRCA1 exon 3-16 deletion, and a BRCA2 exon 20 deletion with a novel breakpoint as well as two novel BRCA1 exon 17-18 and BRCA1 exon 19 deletions. The large rearrangements in BRCA1 and BRCA2 accounted for 9.2% (15/163) of all BRCA1 and BRCA2 mutations in East Denmark. Nine patients had the exon 3-16 deletion in BRCA1. By SNP analysis we find that the patients share a 5 Mb fragment of chromosome 17, including BRCA1, indicating that the exon 3-16 deletion represents a Danish founder mutation.
Assuntos
Neoplasias da Mama/genética , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Sequência de Bases , Dinamarca , Feminino , Efeito Fundador , Rearranjo Gênico , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We examined 32 breast and/or ovarian cancer patients from Greenland for mutations in BRCA1 and BRCA2. Whereas no mutations were identified in 19 families, 13 families exhibited a BRCA1 exon 3 nucleotide 234 T > G mutation, which has not previously been reported in the breast cancer information core (BIC) database. The mutation changes a conserved cysteine 39 to a glycine in the Zn(2+) site II of the RING domain, which is essential for BRCA1 ubiquitin ligase activity. Eight of the families had members with ovarian cancer, suggesting that the RING domain may be an ovarian cancer hotspot. By SNP array analysis, we find that all 13 families share a 4.5 Mb genomic fragment containing the BRCA1 gene, showing that the mutation originates from a founder. Finally, analysis of 1152 Inuit, representing almost ~2% of the total Greenlandic Inuit population, showed that the frequency of the mutation was 1.0%. We conclude that the BRCA1 nucleotide 234 T > G is a common Greenlandic Inuit founder mutation. The relative high frequency in the general population, together with the ease of screening and possibility to reduce mortality in gene carriers, may warrant screening of the Greenlandic Inuit population. Provided screening is efficient, about 5% of breast- and 13% of ovarian cancers, respectively, may be prevented.
Assuntos
Efeito Fundador , Genes BRCA1 , Mutação , Adulto , Sequência de Aminoácidos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Genes BRCA2 , Groenlândia , Humanos , Inuíte , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Homologia de Sequência de AminoácidosRESUMO
BACKGROUND: BRCA2 germ-line mutations predispose to breast and ovarian cancer. Mutations are widespread and unclassified splice variants are frequently encountered. We describe the parental origin and functional characterization of a novel de novo BRCA2 splice site mutation found in a patient exhibiting a ductal carcinoma at the age of 40. METHODS: Variations were identified by denaturing high performance liquid chromatography (dHPLC) and sequencing of the BRCA1 and BRCA2 genes. The effect of the mutation on splicing was examined by exon trapping in COS-7 cells and by RT-PCR on RNA isolated from whole blood. The paternity was determined by single nucleotide polymorphism (SNP) microarray analysis. Parental origin of the de novo mutation was determined by establishing mutation-SNP haplotypes by variant specific PCR, while de novo and mosaic status was investigated by sequencing of DNA from leucocytes and carcinoma tissue. RESULTS: A novel BRCA2 variant in the splice donor site of exon 21 (nucleotide 8982+1 G-->A/c.8754+1 G-->A) was identified. Exon trapping showed that the mutation activates a cryptic splice site 46 base pairs 3' of exon 21, resulting in the inclusion of a premature stop codon and synthesis of a truncated BRCA2 protein. The aberrant splicing was verified by RT-PCR analysis on RNA isolated from whole blood of the affected patient. The mutation was not found in any of the patient's parents or in the mother's carcinoma, showing it is a de novo mutation. Variant specific PCR indicates that the mutation arose in the male germ-line. CONCLUSION: We conclude that the novel BRCA2 splice variant is a de novo mutation introduced in the male spermatozoa that can be classified as a disease causing mutation.
Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Genes BRCA2 , Mutação , Neoplasias Hormônio-Dependentes/genética , Adulto , Feminino , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Genetic testing of BRCA1/2 includes screening for single nucleotide variants and small insertions/deletions and for larger copy number variations (CNVs), primarily by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). With the advent of next-generation sequencing (NGS), it has become feasible to provide CNV information and sequence data using a single platform. We report the use of NGS gene panel sequencing on the Illumina MiSeq platform and JSI SeqPilot SeqNext software to call germline CNVs in BRCA1 and BRCA2. For validation 18 different BRCA1/BRCA2 CNVs previously identified by MLPA in 48 Danish breast and/or ovarian cancer families were analyzed. Moreover, 120 patient samples previously determined as negative for BRCA1/BRCA2 CNVs by MLPA were included in the analysis. Comparison of the NGS data with the data from MLPA revealed that the sensitivity was 100%, whereas the specificity was 95%. Taken together, this study validates a one-step bioinformatics work-flow to call germline BRCA1/2 CNVs using data obtained by NGS of a breast cancer gene panel. The work-flow represents a robust and easy-to-use method for full BRCA1/2 screening, which can be easily implemented in routine diagnostic testing and adapted to genes other than BRCA1/2.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Carcinoma Epitelial do Ovário , Biologia Computacional , Variações do Número de Cópias de DNA/genética , Feminino , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologiaRESUMO
The increasing availability of genome-wide analysis has made it possible to rapidly sequence the exome of patients with undiagnosed or unresolved medical conditions. Here, we present the case of a 64-yr-old male patient with schistocytes in the peripheral blood smear and a complex and life-threatening coagulation disorder causing recurrent venous thromboembolic events, severe thrombocytopenia, and subdural hematomas. Whole-exome sequencing revealed a frameshift mutation (C3AR1 c.355-356dup, p.Asp119Alafs*19) resulting in a premature stop codon in C3AR1 (Complement Component 3a Receptor 1). Based on this finding, atypical hemolytic uremic syndrome was suspected because of a genetic predisposition, and a targeted treatment regime with eculizumab was initiated. Life-threatening hemostatic abnormalities would most likely have persisted had it not been for the implementation of whole-exome sequencing in this particular clinical setting.