Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Geophys Res Lett ; 49(21): e2022GL099154, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36589775

RESUMO

Chromium stable isotope composition (δ53Cr) is a promising tracer for redox conditions throughout Earth's history; however, the geochemical controls of δ53Cr have not been assessed in modern redox-stratified basins. We present new chromium (Cr) concentration and δ53Cr data in dissolved, sinking particulate, and sediment samples from the redox-stratified Lake Cadagno (Switzerland), a modern Proterozoic ocean analog. These data demonstrate isotope fractionation during incomplete (non-quantitative) reduction and removal of Cr above the chemocline, driving isotopically light Cr accumulation in euxinic deep waters. Sediment authigenic Cr is isotopically distinct from overlying waters but comparable to average continental crust. New and published data from other redox-stratified basins show analogous patterns. This challenges assumptions from δ53Cr paleoredox applications that quantitative Cr reduction and removal limits isotope fractionation. Instead, fractionation from non-quantitative Cr removal leads to sedimentary records offset from overlying waters and not reflecting high δ53Cr from oxidative continental weathering.

2.
Nature ; 530(7589): 207-10, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840491

RESUMO

No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Camada de Gelo , Oxigênio/análise , Água do Mar/química , Regiões Antárticas , Dióxido de Carbono/história , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Respiração Celular , Clima , Poeira , Sedimentos Geológicos/química , História Antiga , Ferro/análise , Ferro/química , Oceanos e Mares , Oxirredução , Oxigênio/metabolismo , Temperatura , Movimentos da Água
3.
Global Biogeochem Cycles ; 34(1): e2019GB006397, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32713990

RESUMO

While chromium stable isotopes (δ53Cr) have received significant attention for their utility as a tracer of oxygen availability in the distant geological past, a mechanistic understanding of modern oceanic controls on Cr and δ53Cr is still lacking. Here we present total dissolved δ53Cr, concentrations of Cr (III) and total dissolved Cr, and net community productivity (NCP) from the North Pacific. Chromium concentrations show surface depletions in waters with elevated NCP, but not in lower productivity waters. Observed Cr deficits correspond well with calculated Cr export derived from NCP and Cr:C ratios of natural phytoplankton and marine particulates. Chromium (III) concentrations are stable over the diel cycle yet correlate with NCP, with maxima found in highly productive surface waters but not in lower productivity waters, indicating biological control on Cr (III). The relationship between Cr (III) and δ53Cr suggests that δ53Cr distributions may be controlled by the removal of isotopically light Cr (III) at an isotopic enrichment factor (∆53Cr) of -1.08‰ ± 0.25 relative to total dissolved δ53Cr, in agreement with the global δ53Cr-Cr fractionation factor (-0.82‰ ± 0.05). No perturbation to δ53Cr, Cr, or Cr (III) is observed in oxygen-depleted waters (~10 µmol/kg), suggesting no strong control by O2 availability, in agreement with other recent studies. Therefore, we propose that biological productivity is the primary control on Cr and δ53Cr in the modern ocean. Consequently, δ53Cr records in marine sediments may not faithfully record oxygen availability in the Late Quaternary. Instead, our data demonstrate that δ53Cr records may be a useful tracer for biological productivity.

4.
Proc Natl Acad Sci U S A ; 114(50): 13114-13119, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180424

RESUMO

During the Mid-Pleistocene Transition (MPT; 1,200-800 kya), Earth's orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 µatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

5.
Proc Natl Acad Sci U S A ; 113(22): 6119-24, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185933

RESUMO

Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.


Assuntos
Arqueologia , Evolução Biológica , Poeira/análise , Sedimentos Geológicos/análise , Biologia Marinha , Água do Mar/análise , Oceano Pacífico , Fitoplâncton
6.
Nature ; 476(7360): 312-5, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21814203

RESUMO

Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.


Assuntos
Clima , Poeira/análise , Água do Mar/química , Alcanos/análise , Oceano Atlântico , Atmosfera/química , Ciclo do Carbono , Dióxido de Carbono/análise , Diatomáceas/metabolismo , Ecossistema , Sedimentos Geológicos/química , História Antiga , Gelo/análise , Ferro/análise , Nitratos/análise , Oceanos e Mares , Reprodutibilidade dos Testes , Incerteza , Vento
7.
Nat Commun ; 15(1): 3489, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664426

RESUMO

The polar oceans play a vital role in regulating atmospheric CO2 concentrations (pCO2) during the Pleistocene glacial cycles. However, despite being the largest modern reservoir of respired carbon, the impact of the subarctic Pacific remains poorly understood due to limited records. Here, we present high-resolution, 230Th-normalized export productivity records from the subarctic northwestern Pacific covering the last five glacial cycles. Our records display pronounced, glacial-interglacial cyclicity superimposed with precessional-driven variability, with warm interglacial climate and high boreal summer insolation providing favorable conditions to sustain upwelling of nutrient-rich subsurface waters and hence increased export productivity. Our transient model simulations consistently show that ice sheets and to a lesser degree, precession are the main drivers that control the strength and latitudinal position of the westerlies. Enhanced upwelling of nutrient/carbon-rich water caused by the intensification and poleward migration of the northern westerlies during warmer climate intervals would have led to the release of previously sequestered CO2 from the subarctic Pacific to the atmosphere. Our results also highlight the significant role of the subarctic Pacific in modulating pCO2 changes during the Pleistocene climate cycles, especially on precession timescale ( ~ 20 kyr).

8.
Nature ; 449(7164): 890-3, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17943127

RESUMO

Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods, but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal. Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that--together with previously published results--show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition approximately 14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration. We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic, which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir, but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.


Assuntos
Dióxido de Carbono/análise , Efeito Estufa , Camada de Gelo , Água do Mar/química , Animais , Oceano Atlântico , Atmosfera/química , Isótopos de Carbono , História Antiga , Oxigênio/metabolismo , Isótopos de Oxigênio , Oceano Pacífico , Fosfatos/metabolismo , Plâncton/metabolismo
9.
Nat Commun ; 14(1): 3788, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355680

RESUMO

Changes in ocean ventilation have been pivotal in regulating carbon sequestration and release on centennial to millennial timescales. However, paleoceanographic reconstructions documenting changes in deep-ocean ventilation using 14C dating, may bear multidimensional explanations, obfuscating the roles of ocean ventilation played on climate evolution. Here, we show that previously inferred poorly ventilated conditions in the North Atlantic were linked to enhanced pre-aged organic carbon (OC) input during Heinrich Stadial 1 (HS1). The 14C age of sedimentary OC was approximately 13,345 ± 692 years older than the coeval foraminifera in the central North Atlantic during HS1, which is coupled to a ventilation age of 5,169 ± 660 years. Old OC was mainly of terrigenous origin and exported to the North Atlantic by ice-rafting. Remineralization of old terrigenous OC in the ocean may have contributed to, at least in part, the anomalously old ventilation ages reported for the high-latitude North Atlantic during HS1.


Assuntos
Carbono , Água do Mar , Camada de Gelo , Respiração , Viés , Oceanos e Mares , Oceano Atlântico
10.
Nat Commun ; 13(1): 5662, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192420

RESUMO

Inconsistencies between Holocene climate reconstructions and numerical model simulations question the robustness of climate models and proxy temperature records. Climate reconstructions suggest an early-middle Holocene Thermal Maximum (HTM) followed by gradual cooling, whereas climate models indicate continuous warming. This discrepancy either implies seasonal biases in proxy-based climate reconstructions, or that the climate model sensitivity to forcings and feedbacks needs to be reevaluated. Here, we analyze a global database of Holocene paleotemperature records to investigate the spatiotemporal structure of the HTM. Continental proxy records at mid and high latitudes of the Northern Hemisphere portray a "classic" HTM (8-4 ka). In contrast, marine proxy records from the same latitudes reveal an earlier HTM (11-7ka), while a clear temperature anomaly is missing in the tropics. The results indicate a heterogeneous response to climate forcing and highlight the lack of globally synchronous HTM.


Assuntos
Mudança Climática , Clima , Temperatura Baixa , Temperatura
11.
Nature ; 433(7028): 821-5, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-15729332

RESUMO

In the context of gradual Cenozoic cooling, the timing of the onset of significant Northern Hemisphere glaciation 2.7 million years ago is consistent with Milankovitch's orbital theory, which posited that ice sheets grow when polar summertime insolation and temperature are low. However, the role of moisture supply in the initiation of large Northern Hemisphere ice sheets has remained unclear. The subarctic Pacific Ocean represents a significant source of water vapour to boreal North America, but it has been largely overlooked in efforts to explain Northern Hemisphere glaciation. Here we present alkenone unsaturation ratios and diatom oxygen isotope ratios from a sediment core in the western subarctic Pacific Ocean, indicating that 2.7 million years ago late-summer sea surface temperatures in this ocean region rose in response to an increase in stratification. At the same time, winter sea surface temperatures cooled, winter floating ice became more abundant and global climate descended into glacial conditions. We suggest that the observed summer warming extended into the autumn, providing water vapour to northern North America, where it precipitated and accumulated as snow, and thus allowed the initiation of Northern Hemisphere glaciation.


Assuntos
Clima Frio , Camada de Gelo , Estações do Ano , Regiões Árticas , Diatomáceas/química , Diatomáceas/metabolismo , Sedimentos Geológicos/química , História Antiga , Oxigênio/análise , Oceano Pacífico , Água do Mar/química , Neve , Temperatura , Fatores de Tempo
12.
Sci Rep ; 11(1): 20473, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650117

RESUMO

The millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC) is well documented for the last glacial termination and beyond. Despite its importance for the climate system, the evolution of the South Pacific overturning circulation (SPOC) is by far less well understood. A recently published study highlights the potential applicability of the 231Pa/230Th-proxy in the Pacific. Here, we present five sedimentary down-core profiles of 231Pa/230Th-ratios measured on a depth transect from the Pacific sector of the Southern Ocean to test this hypothesis using downcore records. Our data are consistent with an increase in SPOC as early as 20 ka that peaked during Heinrich Stadial 1. The timing indicates that the SPOC did not simply react to AMOC changes via the bipolar seesaw but were triggered via Southern Hemisphere processes.

13.
Nature ; 428(6978): 59-63, 2004 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-14999278

RESUMO

The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.


Assuntos
Clima Frio , Água do Mar/química , Temperatura , Animais , Atmosfera/química , Dióxido de Carbono/análise , Diatomáceas/fisiologia , Eucariotos/fisiologia , Sedimentos Geológicos/química , Gelo , Nitrogênio/análise , Oceanos e Mares , Oceano Pacífico , Fitoplâncton/fisiologia , Estações do Ano , Cloreto de Sódio/análise , Fatores de Tempo , Movimentos da Água
14.
Nat Commun ; 11(1): 6192, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273459

RESUMO

Past changes in ocean 14C disequilibria have been suggested to reflect the Southern Ocean control on global exogenic carbon cycling. Yet, the volumetric extent of the glacial carbon pool and the deglacial mechanisms contributing to release remineralized carbon, particularly from regions with enhanced mixing today, remain insufficiently constrained. Here, we reconstruct the deglacial ventilation history of the South Indian upwelling hotspot near Kerguelen Island, using high-resolution 14C-dating of smaller-than-conventional foraminiferal samples and multi-proxy deep-ocean oxygen estimates. We find marked regional differences in Southern Ocean overturning with distinct South Indian fingerprints on (early de-)glacial atmospheric CO2 change. The dissipation of this heterogeneity commenced 14.6 kyr ago, signaling the onset of modern-like, strong South Indian Ocean upwelling, likely promoted by rejuvenated Atlantic overturning. Our findings highlight the South Indian Ocean's capacity to influence atmospheric CO2 levels and amplify the impacts of inter-hemispheric climate variability on global carbon cycling within centuries and millennia.

15.
Science ; 370(6522): 1348-1352, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303618

RESUMO

Previous studies have suggested that during the late Pleistocene ice ages, surface-deep exchange was somehow weakened in the Southern Ocean's Antarctic Zone, which reduced the leakage of deeply sequestered carbon dioxide and thus contributed to the lower atmospheric carbon dioxide levels of the ice ages. Here, high-resolution diatom-bound nitrogen isotope measurements from the Indian sector of the Antarctic Zone reveal three modes of change in Southern Westerly Wind-driven upwelling, each affecting atmospheric carbon dioxide. Two modes, related to global climate and the bipolar seesaw, have been proposed previously. The third mode-which arises from the meridional temperature gradient as affected by Earth's obliquity (axial tilt)-can explain the lag of atmospheric carbon dioxide behind climate during glacial inception and deglaciation. This obliquity-induced lag, in turn, makes carbon dioxide a delayed climate amplifier in the late Pleistocene glacial cycles.

18.
Sci Data ; 7(1): 115, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286335

RESUMO

A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.

20.
Science ; 363(6431): 1080-1084, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846597

RESUMO

From 1.25 million to 700,000 years ago, the ice age cycle deepened and lengthened from 41,000- to 100,000-year periodicity, a transition that remains unexplained. Using surface- and bottom-dwelling foraminifera from the Antarctic Zone of the Southern Ocean to reconstruct the deep-to-surface supply of water during the ice ages of the past 1.5 million years, we found that a reduction in deep water supply and a concomitant freshening of the surface ocean coincided with the emergence of the high-amplitude 100,000-year glacial cycle. We propose that this slowing of deep-to-surface circulation (i.e., a longer residence time for Antarctic surface waters) prolonged ice ages by allowing the Antarctic halocline to strengthen, which increased the resistance of the Antarctic upper water column to orbitally paced drivers of carbon dioxide release.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa